Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

500 kV輸電鐵塔力學失效分析和失效預測研究

來源:電工電氣發(fā)布時間:2024-05-08 14:08瀏覽次數:385

500 kV輸電鐵塔力學失效分析和失效預測研究

陳易飛1, 陽林1, 黃歡2, 吳建蓉2
(1 華南理工大學 電力學院,廣東 廣州 510640;
2 貴州電網電力科學研究院,貴州 貴陽 550000)
 
    摘 要:針對中國南方地區(qū)典型覆冰線路,采用有限元仿真方法建立了 500 kV 輸電鐵塔的仿真模型,開展了不均勻覆冰下不同覆冰厚度和不同風速等工況的力學特性分析,統(tǒng)計得到鐵塔的薄弱點位置規(guī)律。基于薄弱點構件的軸向應力和節(jié)點位移,開展輸電鐵塔力學失效分析,并通過基于 BP 神經網絡的輸電鐵塔力學失效預測方法研究,實現對輸電鐵塔最大軸向應力和節(jié)點位移的預測。結果表明:相同風速和基本冰厚下,長、短檔距側冰厚值相差越大,薄弱點構件軸向應力和節(jié)點位移值越大;隨著覆冰厚度的增加,風速對節(jié)點位移的影響更大;相同冰風荷載下,長檔距側重覆冰對軸向應力和節(jié)點位移的影響要大于短檔距側重覆冰;不均勻覆冰工況下,500 kV 輸電鐵塔的薄弱點位置主要分布在輸電鐵塔塔頭地線支架處、上下曲臂連接處、瓶頸處以及鐵塔的塔身處。該預測方法可以實現對其最大軸向應力和節(jié)點位移的有效預測,為重冰區(qū)輸電鐵塔的失效預測提供了參考。
    關鍵詞: 覆冰線路;輸電鐵塔;失效分析;失效預測
    中圖分類號:TM726 ;TM753     文獻標識碼:A     文章編號:1007-3175(2024)04-0017-10
 
Study on Mechanical Failure Analysis and Failure Prediction of
500 kV Transmission Tower
 
CHEN Yi-fei1, YANG Lin1, HUANG Huan2, WU Jian-rong2
(1 School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China;
2 Guizhou Power System Research Institute, Guiyang 550000, China)
 
    Abstract: This paper focuses on typical icing transmission lines in southern China and uses finite element simulation method to establish the simulation model of 500 kV transmission towers. The mechanical characteristics of different icing thicknesses and wind speeds under uneven icing working conditions are analyzed, and the weak point position rules of the towers are statistically obtained. Based on the axial stress and nodal displacement of weak point components, the mechanical failure analysis of the transmission tower was carried out, and the prediction of the maximum axial stress and nodal displacement of the transmission tower was realized through the research of the transmission tower mechanical failure prediction method based on BP neural network. The study results show that the greater the difference between the ice thickness values of the long and short pitch sides, the greater the axial stress and node displacement values of the weak point members under the same wind speed and basic ice thickness. As the thickness of ice cover increases, the influence of wind speed on node displacement becomes greater. Under the same ice wind load, the influence of longpitch heavy icing on axial stress and nodal displacement is greater than that of shortpitch heavy icing. Under uneven icing working conditions, the weak points position of 500 kV transmission towers are mainly distributed at the ground wire support of the tower head, the connection between the upper and lower curved arms, the bottleneck, and the body of the tower. The prediction method can effectively predict the maximum axial stress and nodal displacement providing a reference to the failure prediction of transmission towers in heavy ice areas.
    Key words: icing transmission line; transmission tower; failure analysis; failure prediction
 
參考文獻
[1] WEN Y, CHEN Y, WU J, et al.Research on Risk Assessment and Suppression Measures for Ice-Shedding on 500 kV Compact Overhead Lines[J].Enegies,2022,15 :8005.
[2] YANG Lin, CHEN Yifei, HAO Yanpeng, et al.Detection Method for Equivalent Ice Thickness of 500 kV Overhead Lines Based on Axial Tension Measurement and Its Application[J].IEEE Transactions on Instrumentation and Measurement,2023,72 :1-11.
[3] 陳易飛,文屹,毛先胤,等. 基于 COMSOL 和 MATLAB 的輸電鐵塔力學仿真界面設計[J] . 電力大數據,2023,26(10) :75-84.
[4] YANG Lin , CHEN Yifei , MEI Lulu,et al.Prediction method for response characteristics parameters of isolated-span overhead lines after ice-shedding based on finite element simulation and machine learning[J].Electric Power Systems Research,2024,229 :110141.
[5] 文屹,陳易飛,毛先胤,等.500 kV 輸電鐵塔覆冰風險評估與加固措施[J] . 電力工程技術,2023,42(2) :250-257.
[6] YANG L, HE S J, CHEN Y F, et al.Effect of droplet deformation on discharge at icicle tip of ice-covered insulators during melting period[J].Electric Power Systems Research,2022,213 :108723.
[7] YAO Chenguo, MAO Feng, XU Daolin, et al.Mechanical Properties of Transmission Tower-Line System in Non-Uniformly Iced Condition[J]. HighVoltage Engineering,2011,37(12) :3084-3092.
[8] YANG Lin, HU Zhihao, NIAN Lupeng, et al.Prediction on freezing fraction and collision coefficient in ice accretion model of transmission lines using icing mass growth rate [J] . IET Generation , Transmission & Distribution,2021(2) :1-12.
[9] DUCLOUX H, NYGAARD B E K.Ice loads on overhead lines due to freezing radiation fog events in plains[J].Cold Regions Science and Technology,2018,153 :120-129.
[10] ZHANG J, XIE Q.Failure analysis of transmission tower subjected to strong wind load[J].Journal of Constructional Steel Research,2019,160 :271-279.
[11] ALMINHANA F, MASON M, ALBERMANI F.A compact nonlinear dynamic analysis technique for transmission line cascades[J].Engineering Structures,2018,158 :164-174.
[12] FU Xing, LI Hongnan, WANG Jia.Failure analysis of a transmission tower subjected to combined wind and rainfall excitations[J].Structural Design of Tall and Special Building,2019,28(10) :e1615.
[13] FU Xing, LI Hongnan, LI Gang, et al.Fragility analysis of a transmission tower under combined wind and rain loads [J] . Journal of Wind Engineering and Industrial Aerodynamics,2020,199 :104098.
[14] XIE Qiang , SUN Li . Failure mechanism and retrofitting strategy of transmission tower structures under ice load [J] . Journal of Constructional Steel Research,2012,74 :26-36.
[15] XIE Qiang, SUN Li.Experimental study on the mechanical behavior and failure mechanism of a latticed steel transmission tower[J].Journal of Structural Engineering,2013,139(6) :1009-1018.
[16] NIAN Lupeng, YANG Lin, HAO Yanpeng, et al.Stress analysis of key components of 110 kV straight tower in heavy ice area under uniform ice coating[J].Smart Power,2020,48(1) :15-22.
[17] ZHANG Hourong, ZHANG Li, YANG Yueguang, et al.Research on failure warning technology of tension tower under uniform working condition[J].Southern Power Grid Technology,2018,1(12) :33-40.
[18] WANG Yan, DU Zhiye, RUAN Jiangjun.Study on risk assessment of high voltage overhead transmission lines under icing conditions[J].Power System Protection and Control,2016,44(10) :84-90.
[19] ZHOU Yongqiang, SHENG Qian, CHEN Jian, et al.The failure mode of transmission tower foundation on the landslide under heavy rainfall: A case study on a 500 kV transmission tower foundation on the Yanzi landslide in Badong, China[J].Bulletin of Engineering Geology and the Environment,2022,81 :125.
[20] XIE Qiang, ZHANG Jian.Experimental study on failure mode and retrofitting method of latticed transmission tower[J].Engineering Structures,2021,226 :111365.
[21] MA Yi, PAN Hao, QIAN Guochao, et al.Prediction of Transmission Line Icing Using Machine Learning Based on GS-XG Boost[J].Journal of Sensors,2022,5 :1-9.
[22] YANG Hongming, HUANG La, HE Chunfang, et al.Probabilistic Prediction of Transmission Line Fault Resulted from Disaster of Ice Storm[J].Power System Technology,2012,36(4) :213-218.
[23] ZHENG X W, LI H N, YANG Y B, et al.Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data[J].Engineering Structures,2019,200 :109697.
[24] ZHU Ruiguang, LÜ Dagang.Copula-based correlation analysis of intensity measures of mainshockaftershock ground motions[J].Engineering Mechanics,2019,36(2) :114-123.
[25] LIU Kun, BAI Qiang.Design and Optimization on 500 kV Cuo Tower and JG Type Tension Tower[J].Gunagdong Electric Power,2018,31(4) :133-139.
[26] 電力規(guī)劃設計總院. 架空輸電線路桿塔結構設計技術規(guī)定:DL/T 5154—2012[S]. 北京:中國計劃出版社,2012 :15-18.
[27] SHAO Wei, CHEN Qun, HE Kelun, et al.Operation Optimization of Liquid Cooling Systems in Data Centers by the Heat Current Method and Artificial Neural Network[J].Journal of Thermal Science,2020,29(4) :1063-1075.
[28] TAHERI A, MOGHADAM M G, MOHAMMADI M, et al.A new design of liquid-cooled heat sink by altering the heat sink heat pipe application:Experimental approach and prediction via artificial neural network[J].Energy Convers Manage,2020,206 :112485.
[29] BAUDOIN A , SAURY D , BOSTROM C . Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection[J].Applied Thermal Engineering: DesignProcesses,2017,124 :975-985.
[30] SIMON H . Neural Network : A Comprehensive Foundation[M].Englewood :Prentice Hall PTR,1994.
[31] WU Chenhui, ZHAO Jiateng, LIU Chenzhen, et al.Performance and prediction of baffled cold plate based battery thermal management system[J].Applied Thermal Engineering Design Processes Equipmeng Economics,2023,219 :119466.