Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

考慮綜合需求響應(yīng)的綜合能源系統(tǒng)優(yōu)化調(diào)度

來源:電工電氣發(fā)布時間:2024-10-09 13:09瀏覽次數(shù):114

考慮綜合需求響應(yīng)的綜合能源系統(tǒng)優(yōu)化調(diào)度

周歆瑩1,周濤2,張也可1,曾林俊3,禹濤4
(1 長沙理工大學(xué) 電氣與信息工程學(xué)院,湖南 長沙 410114;
2 湖南電力交易中心有限公司,湖南 長沙 410002;
3 長沙理工大學(xué) 能源與動力工程學(xué)院,湖南 長沙 410114;
4 國網(wǎng)湖南省電力有限公司邵東市供電分公司,湖南 邵東 422800)
 
    摘 要:熱電聯(lián)產(chǎn)(CHP)機組作為綜合能源系統(tǒng)(IES)的關(guān)鍵組成部分,其“以熱定電”的特點,嚴(yán)重影響了 IES 對新能源的消納能力和低碳運行的經(jīng)濟性。引入電轉(zhuǎn)氣(P2G)和碳捕集系統(tǒng)(CCS),將 CHP 機組改造為氣-熱-電聯(lián)產(chǎn)(CGHP)機組,并引入了有機朗肯循環(huán)(ORC)對 P2G 過程中的化學(xué)熱進(jìn)行回收利用;對 CGHP 機組的氣-熱-電運行特性進(jìn)行了研究和分析,在負(fù)荷側(cè)引入了綜合需求響應(yīng)(IDR)機制,以配合源側(cè) CGHP 系統(tǒng)進(jìn)行源荷協(xié)同調(diào)度。通過仿真驗證了所提出模型及協(xié)同運行策略在促進(jìn) IES 消納新能源、降低碳排放和總運營成本方面的有效性。
    關(guān)鍵詞: 電轉(zhuǎn)氣;碳捕集;氣- 熱- 電聯(lián)產(chǎn);綜合需求響應(yīng);綜合能源系統(tǒng)
    中圖分類號:F206 ;TM61     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2024)09-0006-10
 
Optimized Scheduling of Integrated Energy Systems
Considering Integrated Demand Response
 
ZHOU Xin-ying1, ZHOU Tao2, ZHANG Ye-ke1, ZENG Lin-jun3, YU Tao4
(1 School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2 Hunan Power Exchange Center, Changsha 410002, China;
3 College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China;
4 State Grid Hunan Electric Power Company Limited Shaodong Power Supply Co., Ltd, Shaodong 422800, China)
 
    Abstract: As a key component of integrated energy system (IES), combined heat and power (CHP) units are characterized by“heat to power”, which seriously affects IES’ability to absorb new energy and the economy of low-carbon operation. To solve this problem, this study introduced power-to-gas (P2G) and carbon capture and storage (CCS) devices, converted the CHP unit into a combined gas, heat and power (CGHP) unit, and introduced an organic Rankine cycle (ORC) to recycle the chemical heat in the P2G process. Meanwhile, the gas,heat and power operation characteristics of the CGHP unit were studied and analyzed, and the integrated demand response (IDR) mechanism was introduced on the load side to cooperate with the source-load CGHP system for source-load cooperative scheduling. Finally, the effectiveness of the proposed system model as well as the synergistic operation strategy in promoting the IES to consume new energy and reducing carbon emission and total operation cost was verified through simulation.
    Key words: power-to-gas; carbon capture and storage; combined gas, heat and power; integrated demand response; integrated energy system
 
參考文獻(xiàn)
[1] 黃雨涵,丁濤,李雨婷,等. 碳中和背景下能源低碳化技術(shù)綜述及對新型電力系統(tǒng)發(fā)展的啟示[J]. 中國電機工程學(xué)報,2021,41(z1):28-51.
[2] 譚顯東,劉俊,徐志成,等.“雙碳”目標(biāo)下“十四五”電力供需形勢[J]. 中國電力,2021,54(5) :1-6.
[3] 曾鳴,王永利,張碩,等.“十四五”能源規(guī)劃與“30·60”雙碳目標(biāo)實現(xiàn)過程中的 12 個關(guān)鍵問題[J] . 中國電力企業(yè)管理,2021(1) :41-43.
[4] 畢銳,王孝淦,袁華凱,等. 考慮供需雙側(cè)響應(yīng)和碳交易的氫能綜合能源系統(tǒng)魯棒調(diào)度[J]. 電力系統(tǒng)保護(hù)與控制,2023,51(12) :122-132.
[5] MIRZAEI M A, ZATE O M, MOHAMMADI-IVATLOO B,et al.Integrated energy hub system based on power-to-gas and compressed air energy storage technologies in presence of multiple shiftable loads[J].IET Generation Transmission & Distribution,2020,14(13) :2510-2519.
[6] 陸王琳,陸啟亮,張志洪. 碳中和背景下綜合智慧能源發(fā)展趨勢[J]. 動力工程學(xué)報,2022,42(1) :10-18.
[7] 陳錦鵬,胡志堅,陳嘉濱,等. 考慮階梯式碳交易與供需靈活雙響應(yīng)的綜合能源系統(tǒng)優(yōu)化調(diào)度[J]. 高電壓技術(shù),2021,47(9) :3094-3104.
[8] LI W, LI T, WANG H, et al.Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response[J].Energies,2019,12(5) :817.
[9] YANG D , TANG Q , ZHOU B,et al . District energy system modeling and optimal operation considering CHP units dynamic response to wind power ramp events[J].Sustainable Cities and Society,2020,63 :102449.
[10] 孫惠娟,劉昀,彭春華,等. 計及電轉(zhuǎn)氣協(xié)同的含碳捕集與垃圾焚燒虛擬電廠優(yōu)化調(diào)度[J] . 電網(wǎng)技術(shù),2021,45(9) :3534-3544.
[11] 陳錦鵬,胡志堅,陳穎光,等. 考慮階梯式碳交易機制與電制氫的綜合能源系統(tǒng)熱電優(yōu)化[J]. 電力自動化設(shè)備,2021,41(9) :48-55.
[12] 余娟,時權(quán)妍,楊知方,等. 考慮電解水與甲烷化運行特性的電轉(zhuǎn)氣系統(tǒng)日前調(diào)度方法[J]. 電力系統(tǒng)自動化,2019,43(18) :18-25.
[13] TAO Y , QIU J , LAI S , et al . Carbon-oriented electricity network planning and transformation[J].IEEE Transactions on Power Systems,2021,36(2) :1034-1048.
[14] 李東森,高賜威,趙明. 計及電轉(zhuǎn)氣熱回收的綜合能源系統(tǒng)蓄熱罐容量規(guī)劃與運行策略[J]. 電力自動化設(shè)備,2019,39(8) :161-168.
[15] 馬麗葉,朱思宇,盧志剛,等. 考慮時空擴散和碳匯的碳捕集-電轉(zhuǎn)氣協(xié)同優(yōu)化調(diào)度模型[J]. 電力系統(tǒng)自動化,2023,47(2) :15-23.
[16] 李欣,劉立,黃婧琪,等. 含耦合 P2G 和 CCS 的園區(qū)級綜合能源系統(tǒng)優(yōu)化調(diào)度[J]. 電力系統(tǒng)及其自動化學(xué)報,2023,35(4) :18-25.
[17] 袁鐵江,曹繼雷. 計及風(fēng)電- 負(fù)荷不確定性的風(fēng)氫低碳能源系統(tǒng)容量優(yōu)化配置[J] . 高電壓技術(shù),2022,48(6) :2037-2044.
[18] 孫毅,胡亞杰,鄭順林,等. 考慮用戶響應(yīng)特性的綜合需求響應(yīng)優(yōu)化激勵策略[J] . 中國電機工程學(xué)報,2022,42(4) :1402-1412.
[19] 胡福年,張彭成,周小博,等. 計及靈活性資源的綜合能源系統(tǒng)源荷協(xié)調(diào)優(yōu)化調(diào)度[J] . 中國電力,2024,57(5) :2-13.
[20] MA Y, WANG H, HONG F, et al.Modeling and optimization of combined heat and power with power-to-gas andcarbon capture system in integrated energy system[J].Energy,2021,236(5) :121392.
[21] YU S , FAN Y , ZHU L , et al . Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options[J].European Journal of Operational Research,2020,286(3) :1113-1128.