Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于WSO-LSTM的風(fēng)電功率預(yù)測(cè)技術(shù)研究

來源:電工電氣發(fā)布時(shí)間:2026-01-04 15:04瀏覽次數(shù):11
基于WSO-LSTM的風(fēng)電功率預(yù)測(cè)技術(shù)研究
 
滕云雷,李桓
(國(guó)網(wǎng)山東省電力公司臨沂供電公司,山東 臨沂 276000)
 
    摘 要 :為了確保電力系統(tǒng)的可靠運(yùn)行與持續(xù)供電,準(zhǔn)確的風(fēng)電功率預(yù)測(cè)顯得尤為重要。提出了一種新的白鯊優(yōu)化算法-長(zhǎng)短期記憶網(wǎng)絡(luò) (WSO-LSTM) 模型,用于短期風(fēng)電功率的預(yù)測(cè) ;利用LSTM在自動(dòng)學(xué)習(xí) 序列數(shù)據(jù)特征方面的優(yōu)勢(shì),同時(shí)借助WSO的全局優(yōu)化策略對(duì)LSTM層的窗口大小及神經(jīng)元數(shù)量進(jìn)行優(yōu)化。 通過標(biāo)準(zhǔn)性能指標(biāo),將WSO-LSTM的預(yù)測(cè)結(jié)果與實(shí)際功率以及現(xiàn)有模型的預(yù)測(cè)結(jié)果進(jìn)行了對(duì)比,結(jié)果表明, WSO-LSTM能夠?yàn)闅W洲 4 個(gè)風(fēng)電場(chǎng)提供準(zhǔn)確、可靠且穩(wěn)健的風(fēng)電功率預(yù)測(cè),預(yù)測(cè)精度平均提升了 20%~47%。
    關(guān)鍵詞 : 白鯊優(yōu)化算法 ;長(zhǎng)短期記憶網(wǎng)絡(luò) ;風(fēng)電功率預(yù)測(cè) ;機(jī)器學(xué)習(xí) ;特征提取
    中圖分類號(hào) :TM614 ;TM715     文獻(xiàn)標(biāo)識(shí)碼 :A     文章編號(hào) :1007-3175(2025)12-0022-07
 
 The Research on Wind Power Prediction Technology Based on WSO-LSTM
 
TENG Yun-lei, LI Huan
(State Grid Shandong Electric Power Company Linyi Power Supply Company, Linyi 276000, China)
 
    Abstract: To ensure the reliable operation and continuous power supply of the power system, accurate wind power prediction is particularly important. This paper proposes a novel white shark optimization algorithm-long short-term memory network (WSO-LSTM) model for short-term wind power prediction. By taking advantage of the strengths of LSTM in automatically learning the features of sequential data, and with the help of the global optimization strategy of WSO, the window size and the number of neurons of the LSTM layer are optimized. Through standard performance indicators, the prediction results of WSO-LSTM were compared with the actual power and the prediction results of existing models. The results show that WSO-LSTM can provide accurate, reliable and robust wind power prediction for four wind farms in Europe, achieving an average improvement in prediction accuracy ranging from 20% to 47%.
    Key words: white shark optimization algorithm; long short-term memory network; wind power prediction; machine learning; feature extraction 
 
參考文獻(xiàn)
[1] 楊群力,潘學(xué)萍,顧晨,等 . 風(fēng)電機(jī)組仿真模型準(zhǔn)確性評(píng)估試驗(yàn)與方法 [J]. 電工電氣,2024(11) :1-7.
[2] 林海東,匡洪海,王俊,等 . 永磁直驅(qū)風(fēng)電低電壓穿越與功率平抑策略研究 [J]. 電工電氣,2024(11) :8-14.
[3] 蘇向敬,程子凡,聶良釗,等 . 基于AGCN-LSTM模型的海上風(fēng)電場(chǎng)功率概率預(yù)測(cè) [J]. 電力系統(tǒng)自動(dòng)化, 2024,48(22) :140-149.
[4] FOLEY A M, LEAHY P G, MARVUGIIA A, et al. Current methods and advances in forecasting of wind power generation[J].Renewable Energy,2012,37(1) :1-8.
[5] 盧雪平,董存,王錚,等 . 低溫寒潮天氣下的風(fēng)電短期功率預(yù)測(cè)技術(shù)研究 [J] . 電網(wǎng)技術(shù),2024,48(12) : 4833-4843.
[6] MARCIUKAITIS M, KATINAS V, KAVALIAUSKAS A. Wind power usage and predictionprospects in Lithuania[J].Renewable and Sustainable Energy Reviews,2008,12(1) :265-277.
[7] LOUKA P, GALANIS G, SIEBERT N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics:The Journal of the International Association for Wind Engineering, 2008,96(12) :2348-2362.
[8] NIELSEN T S, MADSEN H, NIELSEN H A, et al. Zephyr-The Prediction Models[M].Copenhagen: WIP-Renewable Energies/ETA,2006.
[9] 林鵬 . 基于隨機(jī)模糊理論的風(fēng)電功率預(yù)測(cè) [D]. 北京 : 華北電力大學(xué),2015.
[10] 王欣,李勝剛,秦斌,等 . 基于模糊支持向量機(jī)的風(fēng) 電場(chǎng)功率預(yù)測(cè) [J]. 新型工業(yè)化,2014,4(9) :50-55.
[11] 周松林,茆美琴,蘇建徽 . 基于主成分分析與人工神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率預(yù)測(cè) [J]. 電網(wǎng)技術(shù),2011, 35(9) :128-132.
[12] 張智峰 . 基于改進(jìn) FCM與模糊馬爾可夫鏈的風(fēng)電功率 短期預(yù)測(cè)方法研究 [D]. 銀川 :北方民族大學(xué),2021.
[13] 繆銘狄 . 區(qū)間二型 TSK模糊邏輯系統(tǒng)在風(fēng)電功率預(yù)測(cè)中的應(yīng)用 [D]. 蘭州 :蘭州交通大學(xué),2024.