面向DFIG風電場的自適應頻率控制方法
柳力1,王俊2,肖孟金3
(1 國網電力科學研究院武漢南瑞有限責任公司,湖北 武漢 430074;2 江蘇方天電力技術有限公司,江蘇 南京 211102;
3 國網湖北省電力公司,湖北 武漢 430077)
摘 要:針對雙饋感應風力發(fā)電機(DFIG)風電場提出一種基于模糊神經網絡的一次調頻自適應聯合控制策略,利用神經網絡的學習推理能力,訓練自適應性較強的模糊神經控制器,來實現DFIG風電場轉子動能釋放和儲備功率增發(fā)自適應協同控制,使DFIG風電場能參與系統頻率控制,提升系統的一次頻率控制能力。仿真結果表明,該控制方法能更有效地提高含DFIG風電場系統的頻率控制能力,降低DFIG風電場并網對區(qū)域電網的沖擊,提升區(qū)域電網接納風電能力,促進可再生能源的高效利用。
關鍵詞:DFIG風電場;自適應;頻率控制;轉子動能;備用功率
中圖分類號:TM614 文獻標識碼:A 文章編號:1007-3175(2018)02-0011-06
Adaptive Frequency Control Method for Double Fed Induction Generator Wind Farm
LIU Li1, WANG Jun2, XIAO Meng-jin3
(1 State Grid Electric Power Research Institute Wuhan NARI Limited Liability Company, Wuhan 430074, China;
2 Jiangsu Frontier Electric Technologies Co., Ltd, Nanjing 2111 02, China;
3 State Grid Hubei Electric Power Company, Wuhan 430077, China)
Abstract: Aiming at double fed induction generator (DFIG) wind farms, this paper proposed a kind of primary frequency modulation self-adaptive combined control strategy, used the study inferential capability of neural network and drilled the fuzzy neural controller to realize the DFIG wind farm rotor kinetic energy release and reserve power additional self-adaptive coordination control and to make the DFIG wind farm be able to participate in the system frequency control so as to promote the primary frequency control ability. The simulation result shows that this control method could effectively improve the frequency control ability of wind farm system with DFIG, reduce the impact from the DFIG wind farm grid connected to regional power grids, promote regional power grids acceptance wind power capacity and accelerate efficient utilization of renewable energy sources.
Key words: double fed induction generator wind farm; self-adaptive; frequency control; rotor kinetic energy; reserve power
參考文獻
[1] KUNDUR P.Power system stability and control[M].New York:McGraw Hill Education,1994.
[2] 雷亞洲. 與風電并網相關的研究課題[J]. 電力系統自動化,2003,27(8):84-89.
[3] 卜樹坡,程磊,劉昊. 風電場功率控制策略的研究[J]. 電測與儀表,2016,53(14):51-55.
[4] 蔣大偉. 大規(guī)模風電并網對系統頻率影響分析[D].吉林:東北電力大學,2010.
[5] 韓民曉,崔軍立,姚蜀軍,等. 大量風電引入電網時的頻率控制特性[J]. 電力系統自動化,2008,32(1):29-33.
[6] 關宏亮,遲永寧,王偉勝,等. 雙饋變速風電機組頻率控制的仿真研究[J]. 電力系統自動化,2007,31(7):61-65.
[7] KEUNG P K, LI P, BANAKAR H, et al.Kinetic energy of wind turbine generators for system frequency support[J].IEEE Transactions on Power Systems, 2009,24(1):279-287.
[8] KAYIKCI M, MILANOVIC J V.Dynamic contribution of DFIG-based wind plants to system frequency disturbances[J].IEEE Transactions on Power Systems, 2009,24(2):859-867.
[9] 焦平洋,劉芳,宋蕙慧,等. 雙饋風電機組參與微網調頻的分段控制研究[J]. 電測與儀表,2016,53(12):69-74.
[10] 曹軍,王虹富,邱家駒. 變速恒頻雙饋風電機組頻率控制策略[J]. 電力系統自動化,2009,33(13):78-82.
[11] MORREN J, HAAN S W H D, KLING W L, et al.Wind turbines emulating inertia and supporting primary frequency control[J].IEEE Transactions on Power Systems, 2006,21(1):433-434.
[12] HOLDSWORTH L, EKANAYAKE J B, JENKINS N.Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J].Wind Energy, 2010,7(1):21-35.
[13] CHSNG-CHIEN L R, HUNG C M, YIN Y C.Dynamic reserve allocation for system contingency by DFIG wind farms[J].IEEE Transactions on Power Systems, 2008,23(2):729-736.
[14] ULLAH N R, THIRINGER T, KARLSSON D.Temporary primary frequency control support by variable speed wind turbines-potential and applications[J].IEEE Transactions on Power Systems, 2008,23(2):601-612.
[15] ALMEIDA R G D, LOPES J A P.Participation of doubly fed induction wind generators in system frequency regulation[J].IEEE Transactions on Power Systems, 2007,22(3):944-950.
[16] 李國勇. 智能控制及其MATLAB實現[M]. 北京:電子工業(yè)出版社,2005.