Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的電動(dòng)汽車負(fù)荷短期預(yù)測(cè)

來(lái)源:電工電氣發(fā)布時(shí)間:2019-09-19 10:19 瀏覽次數(shù):714
基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的電動(dòng)汽車負(fù)荷短期預(yù)測(cè)
 
孫婉婉1,楊樂(lè)2
(1 徐州三新供電服務(wù)有限公司豐縣分公司,江蘇 豐縣 221700;2 國(guó)網(wǎng)豐縣供電公司,江蘇 豐縣 221700)
 
    摘 要:開(kāi)展電動(dòng)汽車(EV)充電負(fù)荷預(yù)測(cè)在一定程度上可以有效緩解EV充電對(duì)配電網(wǎng)產(chǎn)生的影響。提出一種用遺傳算法(GA) 同時(shí)優(yōu)化神經(jīng)網(wǎng)絡(luò)權(quán)閾值( 連接權(quán)) 和結(jié)構(gòu)即隱含層單元數(shù)的EV充電負(fù)荷的預(yù)測(cè)方法,并與BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法進(jìn)行對(duì)比。實(shí)驗(yàn)結(jié)果表明所提出的預(yù)測(cè)方法有較高的預(yù)測(cè)精度。
    關(guān)鍵詞:電動(dòng)汽車;負(fù)荷預(yù)測(cè);遺傳算法;BP神經(jīng)網(wǎng)絡(luò)
    中圖分類號(hào):TM714     文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2019)09-0018-04
 
Short-Term Prediction of Electric Vehicle Load Based on Genetic Algorithm and Optimized Neural Network
 
SUN Wan-wan1, YANG Le2
(1 Xuzhou Sanxin Power Supply Service Company Fengxian Branch, Fengxian 221700, China;
2 State Grid Fengxian Power Supply Company, Fengxian 221700, China)
 
    Abstract: The prediction of electric vehicle     (EV) charging load, to some extent, can effectively alleviate the EV charging impact on the power distribution network. This paper proposed a kind of genetic algorithm (GA), at the same time optimized the neural network weight threshold value (connection weight) and structure, the prediction method of EV charging load for the number of hidden layer units, which was compared with the prediction method of BP neural network. The experimental results show that the proposed method has the higher prediction accuracy.
    Key words: electric vehicle; load forecasting; genetic algorithm; BP neural network
 
參考文獻(xiàn)
[1] 劉利平,楊雄平,李昱來(lái),等. 計(jì)及電動(dòng)汽車接入的供電可靠性最優(yōu)分時(shí)電價(jià)模型[J]. 廣東電力,2017,30(5):56-62.
[2] 陽(yáng)經(jīng)偉. 電動(dòng)汽車充電負(fù)荷預(yù)測(cè)方法與充電控制策略研究[D]. 長(zhǎng)沙:湖南大學(xué),2015.
[3] 厲志輝. 電動(dòng)汽車充電站對(duì)電網(wǎng)的影響[D]. 濟(jì)南:山東大學(xué),2013.
[4] BASS R, HARLEY R, LAMBERT F, et al. Residential harmonic load sand EV charging[C]//Power Engineering Society Winter Meeting, Columbus USA,2001:803-808.
[5] 朱海濤. 考慮時(shí)空分布的電動(dòng)汽車充電負(fù)荷預(yù)測(cè)思考[J]. 科技與創(chuàng)新,2015(21):235.
[6] 劉青,戚中譯. 基于蒙特卡洛法的電動(dòng)汽車負(fù)荷預(yù)測(cè)建模[J]. 電力科學(xué)與工程,2014,30(10):14-19.
[7] 楊少兵, 吳命利, 姜久春, 等. 電動(dòng)汽車充電站負(fù)荷建模方法[J]. 電網(wǎng)技術(shù),2013,37(5):1190-1195.
[8] 楊客. 遺傳算法優(yōu)化的B P 神經(jīng)網(wǎng)絡(luò)在連云港港口吞吐量預(yù)測(cè)中的研究[D]. 深圳:深圳大學(xué),2017.
[9] 韓笑. 電動(dòng)汽車充電對(duì)電網(wǎng)的影響研究[D]. 北京:首都師范大學(xué),2014.
[10] 喬超,唐慧佳,王春紅. 一種基于選擇的遺傳算法[J]. 計(jì)算機(jī)工程與應(yīng)用,2007,43(1):70-73.