Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

鋁合金電纜與銅電纜過載暫態(tài)溫升過程對比分析

來源:電工電氣發(fā)布時間:2020-02-27 13:27 瀏覽次數(shù):1148
鋁合金電纜與銅電纜過載暫態(tài)溫升過程對比分析
 
劉杰1,梁經(jīng)龍1,郝靜亮1,黃位華1,張延輝2,藍磊2,王羽2
(1 中國能源建設(shè)集團山西省電力勘測設(shè)計院有限公司,山西 太原 030073;2 武漢大學 電氣與自動化學院,湖北 武漢 430072)
 
摘 要:以常見的水平排布的直埋單芯電纜為例,采用通過暫態(tài)熱路法和有限元法,在等載流量情況下,計算兩種電纜在突然過載后由90 ℃的穩(wěn)態(tài)運行情況暫態(tài)向105 ℃的穩(wěn)態(tài)過渡過程中的熱時間常數(shù),結(jié)果表明:相同的載流量時鋁合金電纜的熱時間常數(shù)大于銅電纜,即通過相同的時間,鋁合金電纜的溫升低于銅纜,暫態(tài)熱路法和有限元法計算結(jié)果接近,過載情況下鋁合金電纜具有較為優(yōu)良的性能。
關(guān)鍵詞:鋁合金電纜;銅電纜;暫態(tài)過程;熱時間常數(shù)
中圖分類號:TM247 文獻標識碼:A 文章編號:1007-3175(2020)02-0027-04
 
Comparative Analysis of Transient Temperature Rise Process of Aluminum Alloy Cable and Copper Cable
 
LIU Jie1, LIANG Jing-long1, HAO Jing-liang1, HUANG Wei-hua1, ZHANG Yan-hui2, LAN Lei2, WANG Yu2
(1 Shanxi Electric Power Survey and Design Institute Co., Ltd, China Energy Engineering Group Co., Ltd, Taiyuan 030073, China;
2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
 
    Abstract: Taking a common horizontally-displaced single-core cable for example, this paper adopted the steady-state thermal path method and the finite element method to calculate the thermal time constant of two kinds of cables in the transition process from the steady-state operation at 90 °C to the steady-state operation at 105 °C after the sudden overload under the same current carrying capacity conditions. The result shows that the thermal time constant of the aluminum alloy cable is greater than that of the copper cable under the same current carrying capacity, that is, the temperature rise of the aluminum alloy cable is lower than that of the copper cable through the same time. The calculation results of transient thermal path method are close to the finite element method and the aluminum alloy cable has better performance under overload conditions.
    Key words: aluminum alloy cable; copper cable; transient process; thermal time constant
 
參考文獻
[1] 謝莉杰. 鋁合金電纜發(fā)展趨勢及應(yīng)用的研究[J]. 質(zhì)量技術(shù)監(jiān)督研究,2018(1):25-29.
[2] 鄭雁翎,王寧,李洪杰,等. 電力電纜載流量計算的方法與發(fā)展[J]. 電氣應(yīng)用,2010,29(3):26-31.
[3] International Electrotechnical Commission. Calculation of the current rating of electric cables, part1:current rating equations(100% load factor) and calculation of losses, section1: general: IEC 60287-1-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:11-24.
[4] International Electrotechnical Commission. Calculation of the current rating of electric cables, part2: thermal resistance, section1: general: IEC 60287-2-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:19-39.
[5] International Electrotechnical Commission.Calculation of the cyclic and emergency current rating of cables, part2:cyclic rating of cables greater than 18/30(36) kV and emergency ratings for cables of all voltages:IEC 60853-2-2008[S].Geneva:International Electrotechnical Commission Publication,2008:24-31.
[6] 劉毅剛,羅俊華. 電纜導體溫度實時計算的數(shù)學方法[J]. 高電壓技術(shù),2005,31(5):52-54.
[7] 雷成華. 高壓單芯電纜動態(tài)增容的理論分析與實驗研究[D]. 廣州:華南理工大學,2012.
[8] 傅晨釗,司文榮,祝令瑜,等. 土壤直埋單芯電纜暫態(tài)溫升計算模型的研究[J]. 高壓電器,2018,54(1):158-163.
[9] 王鵬.10 kV三芯電纜及附件線芯溫度計算與實驗研究[D]. 廣州:華南理工大學,2016.
[10] 殷瀟波.110 kV以上高壓電纜敷設(shè)周期性載流量研究[D]. 上海:上海交通大學,2010.
[11] 王有元,陳仁剛,陳偉根,等. 有限元法計算地下電纜穩(wěn)態(tài)溫度場及其影響因素[J]. 高電壓技術(shù),2009,35(12):3086-3092.
[12] 張堯,周鑫,牛海清,等. 單芯電纜熱時間常數(shù)的理論計算與試驗研究[J]. 高電壓技術(shù),2009,35(11):2801-2806.