Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于局部模糊推理的區(qū)域電力系統(tǒng)超短期負(fù)荷預(yù)算方法

來(lái)源:電工電氣發(fā)布時(shí)間:2020-03-27 12:27 瀏覽次數(shù):1274
基于局部模糊推理的區(qū)域電力系統(tǒng)超短期負(fù)荷預(yù)算方法
 
武曉朦1,宋晨曦1,2
(1 西安石油大學(xué) 電子工程學(xué)院,陜西 西安 710005;2 陜西省油氣井測(cè)控技術(shù)重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710065)
 
    摘 要:為了解決傳統(tǒng)超短期負(fù)荷預(yù)算方法誤差較大的問(wèn)題,提出一種基于局部模糊推理的區(qū)域電力系統(tǒng)超短期負(fù)荷預(yù)算方法。使用局部模糊推理定義利用的電力系統(tǒng)負(fù)荷歷史數(shù)據(jù),使用序偶法處理負(fù)荷數(shù)據(jù)的模糊集,計(jì)算數(shù)據(jù)的模糊度,得出時(shí)點(diǎn)負(fù)荷的偏離程度。規(guī)定特征時(shí)間尺度,依據(jù)特征時(shí)間尺度的數(shù)量關(guān)系,預(yù)測(cè)超短期隨機(jī)電荷分量,計(jì)算電荷分量的均值,形成新的負(fù)荷序列,平滑處理得到最終的超短期負(fù)荷預(yù)算表達(dá)式,完成對(duì)區(qū)域電力系統(tǒng)超短期負(fù)荷的預(yù)算。實(shí)驗(yàn)表明:與傳統(tǒng)基于BP 神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)算方法相比,基于局部模糊推理的區(qū)域電力系統(tǒng)超短期負(fù)荷預(yù)算方法誤差率只有0.07%,誤差更小,更適合預(yù)算區(qū)域電力系統(tǒng)的超短期負(fù)荷。
    關(guān)鍵詞:局部模糊推理;區(qū)域電力系統(tǒng);超短期負(fù)荷;誤差率
    中圖分類號(hào):TM715    文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2020)03-0032-04
 
Ultra-Short Term Load Budget Method for Regional Power System Based on Local Fuzzy Reasoning
 
WU Xiao-meng1, SONG Chen-xi1,2
(1 School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710005, China;
2 Shaanxi Key Laboratory of Oil and Gas Well Measurement and Control Technology, Xi’an 710065, China)
 
    Abstract: In order to solve the problem of large errors in traditional ultra-short-term load budget method, a regional power system ultrashort-term load budget method based on local fuzzy reasoning is proposed. Local fuzzy reasoning is used to define the historical load data of the power system, and the fuzzy set of load data is processed using the method of sequence coupling. The sequential couple method is used to process the fuzzy sets of load data, calculate the fuzziness of the data, get the deviation degree of the load at the time point. By specifying the characteristic time scale and predicting the ultra-short-term random charge component according to the quantity relationship of the characteristic time scale, the average value of the charge component is calculated to form a new load sequence, and the smoothing process is used to obtain the final ultra-short-term load budget expression, thereby completing the regional budget for ultra short-term load of the power system. Experiments show that compared with the traditional short-term load budgeting method based on BP neural network, the ultra-short-term load budgeting method of regional power systems based on local fuzzy reasoning has an error rate of only 0.07%, and the error is smaller, which is more suitable for the ultra-short-term load of the budgeted regional power system.
    Key words: local blur reasoning; regional power system; ultra-short term load; error rate
 
參考文獻(xiàn)
[1] 張宇帆,艾芊,林琳,等. 基于深度長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)的區(qū)域級(jí)超短期負(fù)荷預(yù)測(cè)方法[J]. 電網(wǎng)技術(shù),2019,43(6):1884-1891.
[2] 曲正偉,張坤,王云靜,等. 基于PSO-OMP優(yōu)化的WD-ASD超短期負(fù)荷預(yù)測(cè)[J]. 電工電能新技術(shù),2017,36(12):39-45.
[3] 張麗,張濤,王福忠,等. 基于柔性負(fù)荷響應(yīng)特性的超短期預(yù)測(cè)方法[J]. 電力系統(tǒng)保護(hù)與控制,2019,47(9):27-34.
[4] 許剛, 吳舜裕. 區(qū)域負(fù)荷趨勢(shì)特征分析與金字塔模型超短期預(yù)測(cè)方法[J]. 計(jì)算機(jī)工程,2018,44(2):287-293.
[5] 熊軍華,牛珂,張春歌,等. 基于小波變異果蠅優(yōu)化支持向量機(jī)短期負(fù)荷預(yù)測(cè)方法研究[J]. 電力系統(tǒng)保護(hù)與控制,2017,45(13):71-77.
[6] 孔祥玉,鄭鋒,鄂志君,等. 基于深度信念網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)方法[J]. 電力系統(tǒng)自動(dòng)化,2018,42(5):133-139.
[7] 于惠鳴,張智晟,龔文杰,等. 基于深度遞歸神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)模型[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2019,31(1):112-116.
[8] 謝真楨,楊秀,張鵬,等. 基于信息論與混合聚類分析的短期負(fù)荷預(yù)測(cè)方法研究[J]. 電測(cè)與儀表,2017,54(19):67-72.
[9] 孫海蓉,謝碧霞,田瑤,等. 基于數(shù)據(jù)的SecRPSOSVM短期電力負(fù)荷預(yù)測(cè)[J]. 系統(tǒng)仿真學(xué)報(bào),2017,29(8):1829-1836.
[10] 朱祥和. 基于小波變換和改進(jìn)螢火蟲(chóng)算法優(yōu)化極限學(xué)習(xí)機(jī)的短期負(fù)荷預(yù)測(cè)[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2017(3):136-144.
[11] 王為國(guó),竇震海,申晉,等. 基于逆推理論改進(jìn)模糊均生函數(shù)的短期負(fù)荷預(yù)測(cè)[J]. 水電能源科學(xué),2017(12):208-211.
[12] 史佳琪,譚濤,郭經(jīng),等. 基于深度結(jié)構(gòu)多任務(wù)學(xué)習(xí)的園區(qū)型綜合能源系統(tǒng)多元負(fù)荷預(yù)測(cè)[J]. 電網(wǎng)技術(shù),2018,42(3):698-706.
[13] 林芳, 林焱, 呂憲龍, 等. 基于均衡KNN算法的電力負(fù)荷短期并行預(yù)測(cè)[J]. 中國(guó)電力,2018,51(10):88-94.
[14] 劉明順,龍志君,趙立進(jìn),等. 基于模糊推理的電網(wǎng)風(fēng)險(xiǎn)評(píng)估及線路重要度辨識(shí)[J]. 電力科學(xué)與技術(shù)學(xué)報(bào),2017,32(3):131-138.