Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

架空高壓線增容技術(shù)研究進(jìn)展

來源:電工電氣發(fā)布時(shí)間:2020-05-14 14:14 瀏覽次數(shù):1090
架空高壓線增容技術(shù)研究進(jìn)展
 
郭振強(qiáng)1,2,張勇1,朱超2,王永慶2,劉云云1,傅金柱2
(1 陜西科技大學(xué) 機(jī)電工程學(xué)院,陜西 西安 710021;2 國(guó)網(wǎng)陜西省電力公司電力科學(xué)研究院,陜西 西安 710021)
 
    摘 要:提高架空線路輸電容量的方法,主要包括加大導(dǎo)線截面、采用新型增容導(dǎo)線、對(duì)現(xiàn)有導(dǎo)線進(jìn)行增容技術(shù)改造等。對(duì)這幾種技術(shù)的研究和應(yīng)用現(xiàn)狀進(jìn)行了分析,著重討論了動(dòng)態(tài)實(shí)時(shí)增容技術(shù),并在對(duì)架空高壓線增容技術(shù)論述的基礎(chǔ)上,闡述了目前主要技術(shù)瓶頸及發(fā)展趨勢(shì),旨在為導(dǎo)線增容的產(chǎn)業(yè)化、經(jīng)濟(jì)化及可持續(xù)發(fā)展提供相關(guān)的理論依據(jù)。
    關(guān)鍵詞:架空高壓線;導(dǎo)線增容;動(dòng)態(tài)實(shí)時(shí)增容
    中圖分類號(hào):TM726.1     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2020)05-0006-06
 
Research Progress on Capacity-Uprating Technology of Overhead High Voltage Line
 
GUO Zhen-qiang1,2, ZHANG Yong1, ZHU Chao2, WANG Yong-qing2, LIU Yun-yun1, FU Jin-zhu2
(1 School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
2 State Grid Shaanxi Electric Power Research Institute, Xi'an 710021, China)
 
    Abstract: The methods to improve the transmission capacity of overhead lines mainly include the methods of increasing the cross section of conductors, adopting new capacitive conductors, increasing the capacity of existing conductors and technical transformation, etc.This paper analyzes the research and application status of these technologies, and focuses on the dynamic real-time capacity-uprating technology. Based on the capacity-uprating technology of overhead high-voltage lines, the main technical bottlenecks and development trends are discussed. And this paper’s aim is to provide relevant theoretical basis for the industrialization, economization and sustainable development of line capacity-uprating.
    Key words: overhead high voltage line; capacity-uprating of line; dynamic real-time capacity-uprating
 
參考文獻(xiàn)
[1] 郭偉,姚楠. 豫西南地區(qū)首條220 kV大截面積導(dǎo)線高壓輸電線路設(shè)計(jì)探討[J]. 電氣應(yīng)用,2011,30(2):60-62.
[2] 葉鴻聲.《110 ~ 500 千伏架空送電線路設(shè)計(jì)技術(shù)規(guī)程》電氣專題報(bào)告之一500 kV線路帶電作業(yè)安全距離的選定[C]//中國(guó)電機(jī)工程學(xué)會(huì)輸電線路專委會(huì)1997年綜合學(xué)術(shù)年會(huì),1997:170-204.
[3] 陳愷,林曉敏. 架空送電線路導(dǎo)線截面選擇探討[J]. 能源與環(huán)境,2017(1):45-46.
[4] 李莉華,高翔. 大截面導(dǎo)線技術(shù)[J]. 上海電力,2007,20(6):590-593.
[5] TRUFANOVA N M, BORODULINA K V, DYATLOV I A.A study of the electric-field intensity of conductors of a 500-kV air line[J].Russian Electrical Engineering,2017,88(11):706-708.
[6] 周孝信,郭劍波,胡學(xué)浩,等. 提高交流500 kV線路輸電能力的實(shí)用化技術(shù)和措施[J]. 電網(wǎng)技術(shù),2001,25(3):3-8.
[7] 蔡有志. 淺析高壓輸電線路增容導(dǎo)線的應(yīng)用[J]. 通訊世界,2019(7):254-256.
[8] 林浩,胡全,王婷婷. 老舊輸電線路增容工程中耐熱導(dǎo)線的選擇應(yīng)用[J]. 中國(guó)電業(yè)(技術(shù)版),2016(3):65-67.
[9] 郭志濤,馬杰,王永瑞.220 kV線路增容改造的耐熱導(dǎo)線選型[J]. 機(jī)電信息,2017(36):83.
[10] 鄭偉. 在增容改造工程利用舊桿塔更換新型碳纖維復(fù)合導(dǎo)線[J]. 電工材料,2017(2):44-48.
[11] JIM Hunt, TEPHEN Barrett.High Capacity, Low Sag[J].Transmission & Distribution World,2006(12):38-41.
[12] KOPSIDAS K, ROWLAND S M. A Performance Analysis of Reconductoring an Overhead Line Structure[J].IEEE Transactions on Power Delivery,2009,24(4):2248-2256.
[13] NETAKE A, KATTI P K. Design aspect of 765 kV transmission system for capacity enhancement[C]//2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015],2015:1-9.
[14] KOPSIDAS K, ROWLAND S M.Investigating the potential of re-conductoring a lattice tower overhead line structure[C]//IEEE PES T&D,2010:1-8.
[15] FAVUZZA S, IPPOLITO M G, MASSARO F, et al. A new approach to increase the integration of RES in a mediterranean island by using HTLS conductors[C]//2015 IEEE 5th International Conference on Power Engineering,Energy and Electrical Drives (POWERENG),2015:272-277.
[16] MATEESCU E, MARGINEAN D, GHEAORGHITA G, et al. Uprating a 220 kV double circuit transmission line in Romania;Study of the possible solutions,technical and economic comparison[C]//2009 IEEE Bucharest PowerTech,2009:1-7.
[17] 中國(guó)電力企業(yè)聯(lián)合會(huì).110 kV ~ 750 kV架空輸電線路設(shè)計(jì)規(guī)范 第4 部分:氣象條件:GB/T 50545—2010[S]. 北京:中國(guó)計(jì)劃出版社,2014:9-11.
[18] MO Yang, WANG Yanling, LIANG Likai, et al. Study on the Impacts of Uncertain Meteorological Parameters on Line Transmission Capacity[J]. International Journal of Emerging Electric Power Systems,2018,19(4):1553-779X.
[19] MAKSIC M, DJURICA V, SOUVENT A, et al. Cooling of overhead power lines due to the natural convection[J].International Journal o f Electrical Power & Energy Systems,2019(113):333-343.
[20] XIE Guosheng, OUYANG Kejian. Design verification of stress and sag for 500 kV transmission line[J]. Vibroengineering PROCEDIA,2015,5:575-578.
[21] 尹增謙,徐東海,張曉宏. 輸電線路等效電阻的計(jì)算[J]. 物理與工程,1999(5):19-20.
[22] GANG L, YANG L I, YUAN C, et al.Effect of Radial Temperature Difference on Sag Calculation for Overhead Conductors[J].Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science),2017,45(7):41-47.
[23] PAVLINIC A, KOMEN Vitomir.Direct monitoring methods of overhead line conductor temperature[J].Engineering Review,2017,37(2):134-146.
[24] 梁任. 架空導(dǎo)線運(yùn)行溫度及載流量的數(shù)值模擬分析[D]. 鄭州:鄭州大學(xué),2017.
[25] 王志毅. 高壓架空輸電線路增容技術(shù)現(xiàn)場(chǎng)應(yīng)用研究[D]. 北京:華北電力大學(xué),2014.
[26] XIA Z, XIA Y, XU Z, et al.Study on the calculation model of maximum allowable time and ampacity for overload operation of overhead transmission line in a short time[C]//2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),2015:1458-1461.
[27] 夏云峰,鄭秋,黃國(guó)飛,等. 架空導(dǎo)線允許短時(shí)過負(fù)荷時(shí)間和載流量計(jì)算模型研究[J]. 電線電纜,2014(5):35-38.
[28] 黨朋,趙文彬. 架空導(dǎo)線短時(shí)過負(fù)荷能力理論及試驗(yàn)研究[J]. 電線電纜,2015(3):39-42.
[29] 鄭良華,田春光,王朔,等. 提高輸電線路冬季載流量的仿真研究[J]. 吉林電力,2006,34(4):5-7.
[30] BABS Adam.Weather-based and conductor state measurement methods applied for dynamic line rating forecasting[C]//2011 International Conference on Advanced Power System Automation and Protection,2011:762-765.
[31] CLOET E, LILIEN J L.Uprating transmission lines through the use of an innovative realtime monitoring system[C]//2011 IEEE PES 12th International Conference on Transmission and Distribution Construction,Operation and Live-Line Maintenance (ESMO),2011:1-6.
[32] HECKENBERGEROVA J, MUSILEK Petr, FILIMONENKOV K.Assessment of seasonal static thermal ratings  of overhead transmission conductors[C]//2011 IEEE Power and Energy Society General Meeting,2011:1-8.
[33] KIM S D, MORCOS M M.An Application of Dynamic Thermal Line Rating Control System to Up- Rate the Ampacity of Overhead Transmission Lines[J].IEEE Transactions on Power Delivery,2013,28(2):1231-1232.
[34] CARLINI E M, FAVUZZA S, GIANGRECO S E, et al. Uprating an overhead line. Italian TSO applications for integration of RES[C]//2013 International Conference on Clean Electrical Power (ICCEP),2013:470-475.
[35] FILIPPONE G, IPPOLITO M G, MASSARO F, et al. GIS systems and LIDAR technology for the operation of HV lines.Sicilian transmission network applications[C]//2013 International Conference on Renewable Energy Research and Applications (ICRERA),2013:868-872.
[36] YIP T, ATEN M, FERRIS B, et al.Dynamic line rating protection for wind farm connections[C]//International Conference & Exhibition on Electricity Distribution,2009:692-696.
[37] NUIJTEN J M, GESCHIERE A, SMIT J C, et al. Future network planning and grid control[C]//2005 International Conference on Future Power Systems,2005:7.
[38] STEPHEN R, LILIEN J L, DOUGLASS D,et al. Guide for Application of Direct Real-Time Monitoring Systems[M]. Cigré:Technical Brochure,2012.