Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于混合優(yōu)化算法的電網(wǎng)故障診斷

來(lái)源:電工電氣發(fā)布時(shí)間:2020-11-19 14:19 瀏覽次數(shù):634
基于混合優(yōu)化算法的電網(wǎng)故障診斷
 
謝瑞,張興旺
(南昌工程學(xué)院 江西省精密驅(qū)動(dòng)與控制重點(diǎn)實(shí)驗(yàn)室,江西 南昌 333000)
 
    摘 要:電網(wǎng)故障過(guò)程中保護(hù)和斷路器動(dòng)作及告警信息存在不確定性,會(huì)使原有電網(wǎng)故障解析模型診斷出現(xiàn)錯(cuò)誤。在現(xiàn)有解析模型基礎(chǔ)上,通過(guò)電網(wǎng)結(jié)構(gòu)、保護(hù)配置及斷路器的動(dòng)作規(guī)則進(jìn)行解析,考慮各級(jí)保護(hù)之間的互相影響,針對(duì)可疑母線(xiàn)和線(xiàn)路分別建立目標(biāo)函數(shù),構(gòu)建新的解析模型。采用混合優(yōu)化算法對(duì)目標(biāo)函數(shù)進(jìn)行求解,將模擬植物生長(zhǎng)算法(PGSA)與粒子群算法(PSO)結(jié)合,初始生長(zhǎng)點(diǎn)的選取對(duì)于PGSA能否收斂于全局最優(yōu)解起著決定作用,先通過(guò)PSO的高魯棒性初選優(yōu)秀的初始生長(zhǎng)點(diǎn),再基于PGSA的高效搜索能力得到最終的全局最優(yōu)解。算例結(jié)果表明,改進(jìn)的解析模型更加合理,混合優(yōu)化算法搜索速度與收斂精度大幅度提高。
    關(guān)鍵詞:故障診斷;優(yōu)化模型;模擬植物生長(zhǎng)算法;粒子群算法;告警信息
    中圖分類(lèi)號(hào):TM711     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2020)11-0031-05
 
Power Grid Fault Diagnosis Based on Mixed Optimization Algorithm
 
XIE Rui, ZHANG Xing-wang
(Jiangxi Provincial Key Laboratory of Precision Drive and Control, Nanchang Institute of Technology, Nanchang 333000, China)
 
    Abstract: There are uncertainties in the protection and circuit breaker action and alarm information in the process of power grid failure, which will cause errors in the diagnosis of the original grid fault analysis model. On the basis of the existing analytical model, analyze the power grid structure, protection configuration and the action rules of the circuit breaker, consider the mutual influence between all levels of protection, establish objective functions for suspicious buses and lines, and build a new analytical model. A hybrid optimization algorithm is used to solve the objective function, and the simulated plant growth algorithm (PGSA) is combined with the particle swarm algorithm (PSO). The selection of the initial growth point determines whether the PGSA can converge to the global optimal solution. First pass the PSO The high robustness of PGSA initially selects excellent initial growth points, and then obtains the final global optimal solution based on the efficient search ability of PGSA. The results of calculation examples show that the improved analytical model is more reasonable, and the search speed and convergence accuracy of the hybrid optimization algorithm are greatly improved.
    Key words: fault diagnosis; optimization model; simulation plant growth algorithm; particle swarm algorithm; warning information
 
參考文獻(xiàn)
[1] 徐彪,尹項(xiàng)根,張哲,等. 電網(wǎng)故障診斷的分階段解析模型[J]. 電工技術(shù)學(xué)報(bào),2018,33(17):4113-4122.
[2] ZHANG Yan, ZHANG Yong, WEN Fushuan, et al. A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints[J].International Journal of Electrical Power & Energy Systems,2016,78:215-224.
[3] LI Z, YIN X, ZHE Z, et al. Wide-Area Protection Fault Identification Algorithm Based on Multi-Information Fusion[J]. IEEE Transactions on Power Delivery,2013,28(3):1348-1355.
[4] YAN Z, CHI Y C, WEN F, et al. An Analytic Model for Fault Diagnosis in Power Systems Utilizing Redundancy and Temporal Information of Alarm Messages[J].IEEE Transactions on Power Systems,2016,31(6):4877-4886.
[5] 郭文鑫,文福拴,廖志偉,等. 計(jì)及保護(hù)和斷路器誤動(dòng)與拒動(dòng)的電力系統(tǒng)故障診斷解析模型[J]. 電力系統(tǒng)自動(dòng)化,2009,33(24):6-10.
[6] 張巖,張勇,文福拴,等. 融合信息理論的電力系統(tǒng)故障診斷解析模型[J]. 電力自動(dòng)化設(shè)備,2014,34(2):158-164.
[7] 翁漢琍,毛鵬,林湘寧. 一種改進(jìn)的電網(wǎng)故障診斷優(yōu)化模型[J]. 電力系統(tǒng)自動(dòng)化,2007,31(7):66-70.
[8] 文福拴,韓禎祥,田磊,等. 基于遺傳算法的電力系統(tǒng)故障診斷的解析模型與方法——第一部分:模型與方法[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),1998,10(3):1-7.
[9] 李彤,王春峰,王文波,等. 求解整數(shù)規(guī)劃的一種仿生類(lèi)全局優(yōu)化算法——模擬植物生長(zhǎng)算法[J].系統(tǒng)工程理論與實(shí)踐,2005,25(1):76-85.
[10] 胡年平,徐芳敏,謝寧,等. 改進(jìn)小生境粒子群算法應(yīng)用于電網(wǎng)故障診斷[J]. 電網(wǎng)與清潔能源,2018,34(2):9-16.
[11] 文福栓,韓禎祥. 基于遺傳算法和模擬退火算法電力系統(tǒng)的故障診斷[J]. 中國(guó)電機(jī)工程學(xué)報(bào),1994,14(3):29-35.