參考文獻
[1] 王利寧,彭天鐸,向征艱,等. 碳中和目標(biāo)下中國能源轉(zhuǎn)型路徑分析[J] . 國際石油經(jīng)濟,2021,29(1) :2-8.
[2] ELKJæR L G, HORST M, NYBORG S.Identities,innovation, and governance: A systematic review of co-creation in wind energy transitions[J].Energy Research & Social Science,2021,71 :101834.
[3] LV Jiaqing , ZHENG Xiaodong , PAWLAK M ,et al. Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms[J].Renewable Energy,2021,177 :181-192.
[4] 萬筱鐘,康耀元,呼斯樂,等. 西北地區(qū)風(fēng)電功率波動特性概率密度及波動統(tǒng)計[J] . 電網(wǎng)與清潔能源,2021,37(4) :107-115.
[5] LIN Zi, LIU Xiaolei, MAURIZIO C.Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks[J].International Journal of Electrical Power and Energy Systems,2020,18(6) :34-41.
[6] LI Lijuan, LI Yuan, ZHOU Bin, et al.An adaptive time-resolution method for ultra short-term wind power prediction [J] .International Journal of Electrical Power and Energy Systems,2020,27(1) :123-131.
[7] 楊茂,馬劍,李成鳳,等. 風(fēng)電功率波動特性的混合 Logistic 分布模型[J] . 電網(wǎng)技術(shù),2017,41(5) :1376-1382.
[8] 丁華杰,宋永華,胡澤春,等. 基于風(fēng)電場功率特性的日前風(fēng)電預(yù)測誤差概率分布研究[J] . 中國電機工程學(xué)報,2013,33(34) :136-144.
[9] 王錚,王偉勝,劉純,等. 基于風(fēng)過程方法的風(fēng)電功率預(yù)測結(jié)果不確定性估計[J] . 電網(wǎng)技術(shù),2013,37(1) :242-247.
[10] 萬書亭,萬杰. 基于量化指標(biāo)和概率密度分布的風(fēng)電功率波動特性研究[J] . 太陽能學(xué)報,2015,36(2) :362-367.
[11] 楊茂,杜剛,齊玥,等. 基于概率統(tǒng)計的風(fēng)電功率波動規(guī)律性分析[J] . 太陽能學(xué)報,2015,36(9) :2231-2237.
[12] ZHANG Z, SUN Y, GAO D W, et al.A versatile probability distribution model for wind power forecast errors and its application in economic dispatch[J].IEEE Transactions on Power Systems,2013,28(3) :3114-3125.
[13] KHOSRAVI Abbas, NAHAVANDI Saeid.Combined nonparametric prediction intervals for wind power generation[J].IEEE Transactions on Sustainable Energy,2013,4(4) :849-856.
[14] BRI-MATHIAS H, DEBRA L, MICHAEL M.Wind power forecasting error distributions :an international comparison[C]//Proceedings of the 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants Conference,2012 :81-90.
[15] 劉燕華,李偉花,劉沖,等. 短期風(fēng)電功率預(yù)測誤差的混合偏態(tài)分布模型[J] . 中國電機工程學(xué)報,2015,35(10) :2375-2381.[16] 王彩霞,魯宗相,喬穎,等. 基于非參數(shù)回歸模型的短期風(fēng)電功率預(yù)測[J] . 電力系統(tǒng)自動化,2010,34(16) :78-82.
[17] 孫建波,吳小珊,張步涵. 基于非參數(shù)核密度估計的風(fēng)電功率區(qū)間預(yù)測[J] . 水電能源科學(xué),2013,31(9) :233-235.
[18] 周松林,茆美琴,蘇建徽. 風(fēng)電功率短期預(yù)測及非參數(shù)區(qū)間估計[J] . 中國電機工程學(xué)報,2011,31(25) :10-16.
[19] SANCHEZ I.Short-term prediction of wind energy production[J].International Journal of Forecasting,2006,22(1) :43-56.
[20] 涂嬌嬌,肖白. 風(fēng)電功率波動特性分析及其在電力系統(tǒng)中的應(yīng)用[D]. 吉林:東北電力大學(xué),2015.