Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

空調(diào)負(fù)荷參與配電網(wǎng)光伏消納兩階段調(diào)度策略研究

來(lái)源:電工電氣發(fā)布時(shí)間:2021-12-16 10:16 瀏覽次數(shù):511

空調(diào)負(fù)荷參與配電網(wǎng)光伏消納兩階段調(diào)度策略研究

方昊宸1,魯曉莉1,王文靜1,陳華明2,劉忠喜1
(1 江蘇科能電力工程咨詢(xún)有限公司,江蘇 南京 210003;
2 南京卓興輝電力工程咨詢(xún)有限公司,江蘇 南京 210006)
 
    摘 要:針對(duì)大規(guī)模光伏并網(wǎng)給配電網(wǎng)帶來(lái)的電網(wǎng)運(yùn)行問(wèn)題,考慮空調(diào)負(fù)荷的需求響應(yīng)能力,提出一種空調(diào)負(fù)荷參與配電網(wǎng)光伏消納的兩階段調(diào)度策略。第一階段,在微網(wǎng)層中,各空調(diào)負(fù)荷聚合商根據(jù)微網(wǎng)運(yùn)營(yíng)商在日前制定的光伏消納計(jì)劃,基于非合作博弈,共同進(jìn)行市場(chǎng)投標(biāo),以確定日前調(diào)度計(jì)劃;第二階段,在配網(wǎng)層中,當(dāng)微網(wǎng)自身無(wú)法完全消納光伏出力,功率返送主網(wǎng),導(dǎo)致網(wǎng)絡(luò)中出現(xiàn)電壓越限時(shí),電網(wǎng)公司利用空調(diào)負(fù)荷的需求響應(yīng)能力調(diào)節(jié)電壓。仿真分析結(jié)果表明,所提策略在提升光伏消納效果,調(diào)節(jié)配電網(wǎng)電壓的同時(shí),還提高了空調(diào)負(fù)荷聚合商的收益,減少了微網(wǎng)運(yùn)營(yíng)商和電網(wǎng)公司的調(diào)控成本。
    關(guān)鍵詞:光伏消納;空調(diào)負(fù)荷;非合作博弈;電壓調(diào)節(jié)
    中圖分類(lèi)號(hào):TM615 ;TM715     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2021)12-0021-06
 
Two-Stage Scheduling Strategy of Air-Conditioning Load Participating in
Photovoltaic Absorption of Distribution Network
 
FANG Hao-chen1, LU Xiao-li1, WANG Wen-jing1, CHEN Hua-ming2, LIU Zhong-xi1
(1 Jiangsu Keneng Power Engineering Consulting Co.,Ltd, Nanjing 210003, China;
2 Nanjing Zhuoxinghui Power Engineering Consulting Co.,Ltd, Nanjing 210006, China)
 
    Abstract: This paper aims at the grid operation problems brought by large-scale photovoltaic connections to the distribution network. It proposes a two-stage scheduling strategy for air-conditioning load to participate in the photovoltaic absorption of distribution network, considering the regulation potential of air-conditioning load. In the first stage, in the micro-grid layer, each air-conditioning load aggregator made a market bid based on a non-cooperative game to determine the day-ahead scheduling plan according to the plan of photovoltaic absorption formulated by the micro-grid operator in the past. In the second stage, the power might return to the main network when the micro-grid in the distribution network layer cannot fully absorb the photovoltaic output. This situation could lead to an over-limit voltage phenomenon in the network. The power grid company adjusted the voltage by using the regulation potential of the air-conditioning load to solve this situation.The simulation results show that the strategy proposed in this paper enhanced the utilization of photovoltaic power and adjusted the distribution network voltage. Besides, the proposal improved the profit of the air-conditioning load aggregator and reduced the regulation cost of the micro-grid operators and the power grid company.
    Key words: photovoltaic absorption; air-conditioning load; non-cooperative game; voltage regulation
 
參考文獻(xiàn)
[1] PAVAN K Y V, BHIMASINGU R.Renewable energy based microgrid system sizing and energy management for green buildings[J].Journal of Modern Power Systems and Clean Energy,2015,3(1) :1-13.
[2] 章力,高元海,熊寧,等. 考慮潮流倒送約束的分布式光伏電站選址定容規(guī)劃[J] . 電力系統(tǒng)自動(dòng)化,2014,38(17) :43-48.
[3] HAQUE M M, WOLFS P.A review of high PV penetrations in LV distribution networks:Present status,impacts and mitigation measures[J].Renewable and Sustainable Energy Reviews,2016,62 :1195-1208.
[4] 陳懿,劉滌塵,吳軍,等. 分布式光伏電源對(duì)配電網(wǎng)電壓波動(dòng)的影響研究[J] . 電測(cè)與儀表,2018,55(14) :27-32.
[5] 唐巍,蔡永翔,徐鷗洋. 低壓配電網(wǎng)高比例戶(hù)用光伏消納技術(shù)研究綜述[J]. 供用電,2017,34(10) :2-7.
[6] 田世明,王蓓蓓,張晶. 智能電網(wǎng)條件下的需求響應(yīng)關(guān)鍵技術(shù)[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(22) :3576-3589.
[7] 王蓓蓓,李揚(yáng),高賜威. 智能電網(wǎng)框架下的需求側(cè)管理展望與思考[J] . 電力系統(tǒng)自動(dòng)化,2009,33(20) :17-22.
[8] 沈敏軒,孫毅,李彬. 基于物聯(lián)網(wǎng)技術(shù)的自動(dòng)需求響應(yīng)系統(tǒng)架構(gòu)與應(yīng)用方案研究[J] . 電測(cè)與儀表,2014,51(24) :96-100.
[9] 李東東, 劉洋, 林順富, 等. 典型居民溫控負(fù)荷建模及聚合特性研究[J] . 電測(cè)與儀表,2017,54(16) :56-62.
[10] ZHANG Wei, LIAN Jianming, CHANG Chin-Yao, et al.Aggregated Modeling and Control of Air Conditioning Loads for Demand Response[J].IEEE Transactions on Power Systems,2013,28(4) :4655-4664.
[11] ZHOU Yu, YI Yongxian, CUI Gaoying, et al.Demand Response Control Strategy of Groups of Central Air-Conditionings for Power Grid Energy Saving[C]//2016 IEEE International Conference on Power and Renewable Energy (ICPRE),2016 :21-23.
[12] SIVANEASAN B, THACHINAMOORTHI K, GOH K P.Interruptible Load Scheme :Demand Response Management for Buildings[C]//2016 IEEE Region 10 Conference (TENCON),2016 :22-25.
[13] WANG Qi,LU Bin,DOU Xiaobo,et al.Distribution Network Voltage Control Based on Coordinated Optimization of PV and Air-Conditioning[J].International Journal of Photoenergy,2018(2) :1-7.
[14] 劉曉峰,高丙團(tuán),羅京,等. 基于非合作博弈的居民負(fù)荷分層調(diào)度模型[J] . 電力系統(tǒng)自動(dòng)化,2017,41(14) :54-60.
[15] 韓華春, 竇曉波, 李強(qiáng), 等. 基于 MPC 的主動(dòng)配電網(wǎng)多級(jí)電壓控制[J] . 電力工程技術(shù),2019,38(3) :41-50.
[16] 陸斌. 空調(diào)負(fù)荷輔助參與配電網(wǎng)經(jīng)濟(jì)調(diào)壓策略研究[D]. 南京:南京師范大學(xué),2018.