Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于改進MNPSO算法的微電網經濟運行優(yōu)化研究

來源:電工電氣發(fā)布時間:2022-07-18 15:18 瀏覽次數(shù):386

基于改進MNPSO算法的微電網經濟運行優(yōu)化研究

柳勇,楊國華,吳宣儒,劉煜,李思維
(寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021)
 
    摘 要:為研究各種改進的粒子群優(yōu)化算法對微電網的經濟運行優(yōu)化,通過構建微電網經濟運行優(yōu)化模型,用多個正態(tài)隨機數(shù)擾動粒子群算法速度和位置的演進方向,對比了改進粒子群算法的收斂性和不同應用環(huán)境下的優(yōu)化性能,采用實際簡單協(xié)調風光儲的微電網算例進行驗證分析,證明了改進算法的優(yōu)化效果并驗證了優(yōu)化微電網經濟運行的科學性。
    關鍵詞: 微電網;改進粒子群優(yōu)化算法;正態(tài)隨機數(shù);優(yōu)化性能
    中圖分類號:TM734     文獻標識碼:A     文章編號:1007-3175(2022)07-0014-08
 
Research on an Improved Particle Swarm Algorithm with Many
Normal Random Number Disturbances
 
LIU Yong, YANG Guo-hua, WU Xuan-ru, LIU Yu, LI Si-wei
(School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
 
    Abstract: This paper constructed an optimized model of the economic operation of the microgrid to optimize the microgrid for studying different improved particle swarm optimization.It employed many normal random numbers to disturb the speed and evaluation direction of the particle swarm optimization. In addition, it compared the astringency of the evolutional particle swarm optimization and the optimal performance under diverse application environments.This paper takes the example of the solar energy storage microgrid to do the analysis. It verifies the improved effect of the evolutional algorithm. Moreover, it validates the scientificity of optimizing the economic operation of the microgrid.
    Key words: microgrid; improved particle swarm optimization algorithm; normal random number; optimized performance
 
參考文獻
[1] 戴旭凡,陸奎,宋丹. 基于混沌映射的自適應退火型粒子群算法的微電網優(yōu)化經濟調度[J] . 蘭州文理學院學報(自然科學版),2021,35(4) :70-74.
[2] 王強杰,沈達,鄔晶,等. 基于天牛須-粒子群算法的微電網日經濟調度優(yōu)化[J] . 上海電機學院學報,2021,24(1) :39-46.
[3] 李星辰,袁旭峰,李沛然,等. 基于改進 QPSO 算法的微電網多目標優(yōu)化運行策略[J] . 電力科學與工程,2020,36(12) :22-29.
[4] 李海濤,崔樹春,聞楓. 基于 r-BBMOPSO 算法的微電網優(yōu)化運行方法[J] . 廣東電力,2020,33(8) :78-85.
[5] 陳深,肖俊陽,黃玉程,等. 基于改進量子粒子群算法的微網多目標優(yōu)化調度[J] . 電力科學與技術學報,2015,30(2) :41-47.
[6] 劉燕華,張楠,張旭. 考慮儲能運行成本的風光儲微網的經濟運行[J] . 現(xiàn)代電力,2013,30(5) :13-18.
[7] 柳勇,王萱政,李思維,等. 面向泛在電力物聯(lián)網的毫秒級分層分區(qū)精準切負荷系統(tǒng)研究[J] . 電工技術,2021(5) :145-148.
[8] 柳勇. 一種實時綜合賦權評判決策的切負荷策略研究[D]. 銀川:寧夏大學,2021.
[9] 劉振,張梅. 常見幾種分布隨機數(shù)產生原理及實現(xiàn)途徑[J] . 中阿科技論壇(中英文),2020(11) :95-97.
[10] 劉剛,耿健,楊冬梅,等. 基于高斯擾動的改進混合粒子群算法研究[J] . 工業(yè)控制計算機,2021,34(3) :12-14.
[11] KROHLING R A.Gaussian swarm:a novel particle swarm optimization algorithm[C]//IEEE Conference on Cybernetics and Intelligent Systems,2004.
[12] 岳小雪,鄭云水,林俊亭. 自適應變異的蝙蝠算法[J].計算機測量與控制,2015,23(2):516-519.
[13] 鄭云水,岳小雪,林俊亭. 帶有高斯變異的混合蛙跳蝙蝠算法[J]. 計算機應用研究,2015,32(12):3629-3633.
[14] 周璨, 董偉廣, 鐘建偉, 等. 基于改進粒子群算法的配電網無功優(yōu)化[J] . 物聯(lián)網技術,2020,10(1):33-35.