Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于改進極限學(xué)習(xí)機的高壓斷路器故障診斷

來源:電工電氣發(fā)布時間:2022-10-24 15:24 瀏覽次數(shù):443

基于改進極限學(xué)習(xí)機的高壓斷路器故障診斷

張蓮1,賈浩2,張尚德2,趙夢琪2,趙娜2,黃偉2
(1 重慶市能源互聯(lián)網(wǎng)工程技術(shù)研究中心,重慶 400054;
2 重慶理工大學(xué) 電氣與電子工程學(xué)院,重慶 400054)
 
    摘 要:針對極限學(xué)習(xí)機連接權(quán)重和閾值隨機選取存在的很大不確定性,提出將麻雀搜索算法與極限學(xué)習(xí)機結(jié)合搭建故障診斷模型(FASSA-ELM)。在原麻雀搜索算法的基礎(chǔ)上引入 Sine 混沌映射優(yōu)化初始種群,結(jié)合螢火蟲算法 (FA) 對麻雀種群的位置以及最優(yōu)解位置進行擾動更新,將改進后的麻雀搜索算法用于優(yōu)化極限學(xué)習(xí)機的權(quán)值和閾值。采用集合經(jīng)驗?zāi)B(tài)方法提取出高壓斷路器分合閘線圈電流中的故障特征量,對斷路器故障特征的仿真分析表明,F(xiàn)ASSA-ELM 的診斷準(zhǔn)確率達到了100%,將訓(xùn)練樣本和測試樣本互換后該模型診斷準(zhǔn)確率為84.5%,與其他三種模型相比,該方法具有更高的準(zhǔn)確率和更好的穩(wěn)定性。
    關(guān)鍵詞: 斷路器;極限學(xué)習(xí)機;故障診斷;分合閘線圈電流
    中圖分類號:TM561     文獻標(biāo)識碼:B     文章編號:1007-3175(2022)10-0050-07
 
Fault Diagnosis of High Voltage Circuit Breaker Based on
Improved Extreme Learning Machine
 
ZHANG Lian1, JIA Hao2, ZHANG Shang-de2, ZHAO Meng-qi2, ZHAO Na2, HUANG Wei2
(1 Chongqing Energy Internet Engineering Technology Research Center, Chongqing 400054, China;
2 School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China)
 
    Abstract: This paper combined an improved sparrow search algorithm with the extreme learning machine to construct a fault diagnosis model (FASSA-ELM) for solving the uncertainty of the weight of connection of the extreme learning machine and the random threshold selection. This study introduced the Sine chaotic map based on the original sparrow search algorithm to optimize the initial population. It is combined with the firefly algorithm (FA) to disturb and update the position of the sparrow population and the optimal solution position.Moreover, it used the improved sparrow search algorithm to optimize the weights and thresholds of the extreme learning machine. This research employed the ensemble empirical mode method to extract the fault feature quantity of the switching coil current of the high voltage circuit breaker and conducted a simulation of the circuit breaker fault characteristic. The analysis results show that the diagnostic accuracy of the FASSA-ELM gets up to 100%. However, if exchanging the training sample for the test sample, the diagnostic accuracy of the model is 84.5%. Compared with the other 3 models, this method has higher accuracy and better stability.
    Key words: circuit breaker; extreme learning machine; fault diagnosis; switching coil current
 
參考文獻
[1] 闕華坤,馮小峰,劉盼龍,等.Grassberger 熵隨機森林在竊電行為檢測的應(yīng)用[J] . 計算機科學(xué),2022,49(S1):790-794.
[2] 方喜峰,于超,章振,等. 基于支持向量機的船用柴油機裝配質(zhì)量預(yù)測[J] . 組合機床與自動化加工技術(shù),2021(9):62-66.
[3] 張佳,陳志英,陳麗安,等. 基于粒子群優(yōu)化極限學(xué)習(xí)機的斷路器故障診斷方法研究[J] . 高壓電器,2020,56(6):181-188.
[4] 黃南天,陳懷金,林琳,等. 基于 S 變換和極限學(xué)習(xí)機的高壓斷路器機械故障診斷[J] . 高壓電器,2018,54(6):74-80.
[5] 于萬國,隋麗娜. 基于支持向量機的軟件工程實驗智能評價分析方法研究[J] . 現(xiàn)代電子技術(shù),2021,44(22):183-186.
[6] 何怡剛,陶琳,施天成,等. 基于改進 BREMD 與 ELM 的斷路器機械故障診斷[J] . 電子測量技術(shù),2018,41(21):81-88.
[7] 劉棟,魏霞,王維慶,等. 基于 SSA-ELM 的短期風(fēng)電功率預(yù)測[J]. 智慧電力,2021,49(6):53-59.
[8] 于波,肖艷利,劉尚科,等. 基于 PSO-ELM 算法的輸變電工程造價預(yù)測分析[J] . 信息技術(shù),2019,43(4):148-151.
[9] 呂鑫,慕曉冬,張鈞,等. 混沌麻雀搜索優(yōu)化算法[J]. 北京航空航天大學(xué)學(xué)報,2021,47(8):1712-1720.
[10] 胡鴻志,覃暢,管芳,等. 基于麻雀搜索算法優(yōu)化支持向量機的刀具磨損識別[J] . 科學(xué)技術(shù)與工程,2021,21(25):10755-10761.
[11] 鄒東堯,李明,李軍,等. 基于改進一維邏輯正弦混沌映射系統(tǒng)的圖像加密算法[J] . 科學(xué)技術(shù)與工程,2021,21(28):12175-12184.
[12] 劉綱,陳奇,雷振博,等. 基于改進螢火蟲算法的有限元模型修正[J] . 工程力學(xué),2022,39(7):1-9.
[13] 朱旭輝,沈國嬌,夏平凡,等. 基于螺旋進化螢火蟲算法和 BP 神經(jīng)網(wǎng)絡(luò)的模型及其在 PPP 融資風(fēng)險預(yù)測中的應(yīng)用[J] . 計算機科學(xué),2022,49(S1):667-674.
[14] 薛茂遠,梅益,唐方艷,等. 基于 GA-ELM 及遺傳算法的注塑件成型工藝優(yōu)化[J] . 塑料,2022,51(1):56-61.