Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于多信息融合的架空輸電線路覆冰舞動(dòng)預(yù)測(cè)方法

來源:電工電氣發(fā)布時(shí)間:2022-10-25 12:25 瀏覽次數(shù):464

基于多信息融合的架空輸電線路覆冰舞動(dòng)預(yù)測(cè)方法

徐偉進(jìn)1,徐煒彬1,王賀冉2,楊歡2
(1 國(guó)網(wǎng)吉林省電力有限公司長(zhǎng)春供電公司,吉林 長(zhǎng)春 130000;
2 長(zhǎng)春工業(yè)大學(xué) 電氣與電子工程學(xué)院,吉林 長(zhǎng)春 130012)
 
    摘 要:針對(duì)寒冷地區(qū)輸電線路覆冰程度難以預(yù)測(cè)的問題,提出了一種基于多信息融合的架空輸電線路覆冰舞動(dòng)預(yù)測(cè)方法。使用 ANSYS Workbench 軟件對(duì)輸電鐵塔的機(jī)械結(jié)構(gòu)模型進(jìn)行應(yīng)力分析,計(jì)算輸電線路鐵塔發(fā)生覆冰舞動(dòng)時(shí)的特征點(diǎn)位移大小與傾角變化,選擇合適位置放置傾角傳感器與振動(dòng)傳感器;當(dāng)線路運(yùn)行時(shí),通過塔身傳感器信息,收集覆冰時(shí)的實(shí)時(shí)氣象數(shù)據(jù),構(gòu)建非線性四分類支持向量機(jī)(SVM)對(duì)覆冰情況進(jìn)行預(yù)測(cè)分類。驗(yàn)證結(jié)果顯示,該方法可以實(shí)現(xiàn)線路覆冰舞動(dòng)現(xiàn)象的提前預(yù)警,預(yù)測(cè)準(zhǔn)確率較高,便于推廣。
    關(guān)鍵詞: 輸電線路;覆冰預(yù)測(cè);ANSYS Workbench 軟件;應(yīng)力分析;支持向量機(jī)
    中圖分類號(hào):TM726.3     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2022)10-0026-04
 
Prediction Method of Icing Galloping of Overhead Transmission
Line Based on Multi-Information Fusion
 
XU Wei-jin1, XU Wei-bin1, WANG He-ran2, YANG Huan2
(1 Changchun Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Changchun 130000, China;
2 School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)
 
    Abstract: The degree of icing of transmission lines in cold regions is difficult to predict. This paper proposed a method for predicting the icing and galloping of overhead transmission lines based on multi-information fusion. This study employed the ANSYS Workbench software to do the stress analysis of the mechanical structure model of the transmission tower. It calculated the displacement of the characteristic point and the change of the inclination angle when the transmission line tower has the phenomena of ice galloping and selected the appropriate position to place the inclination sensor and the vibration sensor.This study collected real-time meteorological data during icing while the line was running. In addition, it constructed a nonlinear four-class SVM to predict and classify the icing situation. The verification results show that this method could warn the icing and galloping of overhead transmission lines in advance.This method has higher accuracy of prediction,and it could be popularized in the industry.
    Key words: transmission line; icing prediction; ANSYS Workbench software; stress analysis; support vector machine
 
參考文獻(xiàn)
[1] 金佛榮. 基于物聯(lián)網(wǎng)的高壓鐵塔擺動(dòng)預(yù)警裝置的設(shè)計(jì)[J]. 科技風(fēng),2019(20):24.
[2] 陳露璐,李陶,劉艷,劉經(jīng)南. 特高壓輸電鐵塔聚束模式 SAR 干涉特性研究與覆冰試驗(yàn)[J] . 測(cè)繪通報(bào),2019(12):30-34.
[3] 張?jiān)?,李清華. 電力鐵塔運(yùn)行狀態(tài)智能在線監(jiān)測(cè)的研究及應(yīng)用[J]. 科技視界,2016(22):9-10.
[4] 牛唯,王斌,馬曉紅,李昊,毛先胤,李銳海. 均勻覆冰下的直線塔架空地線覆冰厚度計(jì)算模型誤差分析[J]. 廣東電力,2021,34(10):76-82.
[5] 左麗. 基于物聯(lián)網(wǎng)的輸電鐵塔振動(dòng)分析系統(tǒng)[D] .保定:華北電力大學(xué),2013.
[6] 黃新波,廖明進(jìn),徐冠華,朱永燦,趙隆. 采用光纖光柵傳感器的輸電線路鐵塔應(yīng)力監(jiān)測(cè)方法[J] .電力自動(dòng)化設(shè)備,2016,36(4):68-72.
[7] 廖明進(jìn). 輸電線路鐵塔應(yīng)力分析及在線監(jiān)測(cè)技術(shù)研究[D]. 西安:西安工程大學(xué),2016.
[8] 崔莉,陸文偉,葛樂,徐曉軼,楊志超. 基于有限元分析的輸電鐵塔實(shí)時(shí)應(yīng)力計(jì)算系統(tǒng)[J] . 實(shí)驗(yàn)室研究與探索,2016,35(5):123-126.
[9] 電力規(guī)劃設(shè)計(jì)總院. 架空輸電線路桿塔結(jié)構(gòu)設(shè)計(jì)技術(shù)規(guī)定:DL/T 5154—2012[S] . 北京:中國(guó)計(jì)劃出版社,2012:13-21.
[10] 郭開春,王波. 考慮灰色關(guān)聯(lián)權(quán)重的 PSO-LSSVM 輸電線路覆冰厚度預(yù)測(cè)模型[J] . 電工材料,2022(1):15-19.
[11] 韓順杰,齊冀樊,姜玉蓮,尤文. 基于主成分分析與遺傳算法-支持向量機(jī)的噴濺預(yù)測(cè)方法[J] . 鋼鐵研究學(xué)報(bào),2016,28(12):21-26.
[12] GEETHA K.Evolutionary Multivariate Kernal Svm Prediction Method for Classification[J].International Journal of Innovative Technology and Exploring Engineering,2020,9(8):28-29.
[13] YIN Feifei, GONG Yu.DBSCAN and SVM for Fault Diagnosis of Wind Turbine Based on SCADA Data[J].International Core Journal of Engineering,2020,6(6):12-15.
[14] 朱永超,朱才朝,宋朝省,王屹立,楊妍妮.PCA-PSO/GS-SVM 組合方法在風(fēng)電齒輪箱故障預(yù)測(cè)中的應(yīng)用研究[J]. 太陽能學(xué)報(bào),2021,42(3):35-42.
[15] AFIFI Shereen Moataz, GHOLAMHOSSEINI Hamid,SINHA Roopak.FPGA Implementations of SVM Classifiers: A Review[J].SN Computer Science,2020,1(3):23-28.