Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于改進(jìn)自抗擾的風(fēng)力發(fā)電系統(tǒng)最大功率控制

來源:電工電氣發(fā)布時(shí)間:2022-12-22 13:22 瀏覽次數(shù):299

基于改進(jìn)自抗擾的風(fēng)力發(fā)電系統(tǒng)最大功率控制

張克兆1,陸偉1,熊磊2,王敏1,丁園園1
(1 中天科技集團(tuán),江蘇 南通 226000;
2 南京航空航天大學(xué) 自動化學(xué)院,江蘇 南京 211100)
 
    摘 要:針對永磁同步風(fēng)力發(fā)電系統(tǒng) (PMWS) 存在的非線性、參數(shù)攝動、不確定性、多干擾等問題,采用一種基于最佳葉尖速比的最大功率跟蹤控制方法,將最大功率捕獲問題轉(zhuǎn)換為最佳速度跟蹤問題,分別針對速度環(huán)和電流環(huán)進(jìn)行自抗擾控制器的設(shè)計(jì);考慮到大干擾環(huán)境中,系統(tǒng)受內(nèi)、外擾動的影響,轉(zhuǎn)速跟蹤精度有所下降,為提高控制精度和魯棒性,針對速度環(huán)設(shè)計(jì)了一種基于擾動觀測的降階自抗擾控制器。通過擾動觀測器對系統(tǒng)的總干擾進(jìn)行在線觀測,然后利用自抗擾控制器進(jìn)行干擾補(bǔ)償,從而提高轉(zhuǎn)速的跟蹤能力。仿真結(jié)果驗(yàn)證了所設(shè)計(jì)的復(fù)合控制器能有效地抑制系統(tǒng)擾動對轉(zhuǎn)速的影響,提高了系統(tǒng)的魯棒性和抗干擾性能。
    關(guān)鍵詞: 擾動觀測;自抗擾控制器;風(fēng)力發(fā)電系統(tǒng);功率跟蹤;非線性
    中圖分類號:TM614     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2022)12-0007-07
 
Maximum Power Control of Wind Power Generation System Based on
Improved Active Disturbance Rejection
 
ZHANG Ke-zhao1, LU Wei1, XIONG Lei2, WANG Min1, DING Yuan-yuan1
(1 Zhongtian Technology Group, Nantong 226000, China;
2 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China)
 
    Abstract: This study proposed an improved ADRC by considering the problem of nonlinearity, parameter perturbation, uncertainty, and multi-disturbance in permanent magnet synchronous wind power generation systems (PMWS). It employed the maximum power tracking control method based on the optimum tip speed ratio to transform the maximum power acquisition problem into the optimal speed tracking problem and designed the ADRC for the speed loop and current loop. The speed tracking accuracy of the wind-driven generator might decrease because the system suffered internal and external disturbance in the maximum interference environment. A reduced-order ADRC based on disturbance observation was designed for the speed loop to improve the control accuracy and robustness. The disturbance observer observed the total disturbances of the system online and used the active disturbance rejection controller to implement disturbance compensation and improve the speed tracking ability. The simulation results verified the designed composite controller could help control the influence of the system disturbance on rotational speed.
    Key words: disturbance observation; auto disturbance rejection controller; wind power generation system; power tracking; nonlinear
 
參考文獻(xiàn)
[1] 李浩博,鄒海榮,朱建紅. 考慮風(fēng)電計(jì)劃跟蹤的儲能調(diào)度模糊控制系統(tǒng)研究[J] . 電力系統(tǒng)保護(hù)與控制,2021,49(1):125-132.
[2] 于晶榮,孫文,于佳琪,等. 基于慣性自適應(yīng)的并網(wǎng)逆變器虛擬同步發(fā)電機(jī)控制[J] . 電力系統(tǒng)保護(hù)與控制,2022,50(4):137-144.
[3] 王雨虹,張威,韓冰,等. 基于 LMI 的永磁同步電機(jī)魯棒 H 自補(bǔ)償滑??刂芠J] . 電力系統(tǒng)保護(hù)與控制,2021,49(5):81-90.
[4] 王龍,郭寅遠(yuǎn),楊博,等. 永磁同步發(fā)電機(jī)自適應(yīng)分?jǐn)?shù)階變槳距角控制[J] . 電力系統(tǒng)保護(hù)與控制,2021,49(20):92-103.
[5] PAN Lin , SHAO Chengpeng . Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and extended state observer[J].Renewable Energy,2020,161:149-161.
[6] FERNANDO J L, GODPROMESSE K, FRANCOISE L L. A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction[J].Renewable Energy,2016,86 :38-48.
[7] PAN Lin, WANG Xudong.Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control[J].Renewable Energy,2020,159:221-237.
[8] LI Shengquan, ZHANG Kezhao, LI Juan, et al.On the rejection of internal and external disturbances in a wind energy conversion system with direct driven PMSG[J]. ISA Transactions,2016,61:95-103.
[9] JIANG Ruifang, ZHAO Zhenzhou, LIU Huiwen,et al.Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect[J].Renewable Energy,2022,186 :730-741.
[10] HAN Jingqing.A class of extended stateobservers for uncertain systems[J].Control and Decision,1995,10(1):85-88.
[11] HAN Jingqing.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906.
[12] 周凱,孫彥成,王旭東,等. 永磁同步電機(jī)的自抗擾控制調(diào)速策略[J] . 電機(jī)與控制學(xué)報(bào),2018,22(2):57-63.
[13] 宋文靜,謝源,黃文君,等. 一種基于改進(jìn)自抗擾控制器的風(fēng)電機(jī)組變槳距控制策略[J] . 科學(xué)技術(shù)與工程,2020,20(7):2719-2726.
[14] DARKHAN Zholtayev, MATTEO Rubagotti, DUC Do Ton.Adaptive super-twisting sliding mode control for maximum power point tracking of PMSG-based wind energy conversion systems[J].Renewable Energy,2021,183:877-889.
[15] 顏湘武,李君巖,魏星. 直驅(qū)永磁同步風(fēng)電機(jī)組在全風(fēng)速范圍內(nèi)的控制策略研究[J] . 電力系統(tǒng)保護(hù)與控制,2019,47(23):138-144.