Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

一種光伏陣列串聯(lián)電弧故障智能檢測方法

來源:電工電氣發(fā)布時間:2023-02-06 16:06 瀏覽次數(shù):478

一種光伏陣列串聯(lián)電弧故障智能檢測方法

金輝,高偉,楊耿杰
(福州大學(xué) 電氣工程與自動化學(xué)院,福建 福州 350108)
 
    摘 要:由于串聯(lián)電弧故障特征表現(xiàn)不足以及樣本不平衡的問題,導(dǎo)致傳統(tǒng)的診斷算法檢測效果不佳。提出了一種基于圖像識別的光伏陣列串聯(lián)電弧故障診斷方法:利用格拉姆角和場(GASF)將發(fā)生串聯(lián)電弧故障時的暫態(tài)電流數(shù)據(jù)編碼為二維圖像,從而放大電弧故障的本質(zhì)特征;深度卷積生成對抗網(wǎng)絡(luò)(DCGAN)被用來增擴電弧故障 GASF 特征圖像,以均衡正常與故障樣本數(shù)量;訓(xùn)練一個 LeNet-5 診斷模型完成電弧故障的識別。經(jīng)過實驗驗證,所提方法有效提升了光伏陣列串聯(lián)電弧故障的辨識度,且具備優(yōu)秀的抗干擾能力,對實測數(shù)據(jù)的整體識別準確率高達99.5%。
    關(guān)鍵詞: 光伏陣列;串聯(lián)電弧故障;格拉姆角和場;深度卷積生成對抗網(wǎng)絡(luò)
    中圖分類號:TM615     文獻標識碼:A     文章編號:1007-3175(2023)01-0043-05
 
An Intelligent Detection Method for Series Arc Fault of Photovoltaic Array
 
JIN Hui, GAO Wei, YANG Geng-jie
(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)
 
    Abstract: The traditional diagnostic algorithms have poor performance because of inadequate characteristic expression of series arc fault (SAF) and sample imbalance. A detection method for series arc fault of photovoltaic array based on image recognition is put forward. First,according to Gramian angular summation field (GASF), the paper encodes the transient current data of SAF into two-dimensional image which amplifies the essential characteristics of SAF. Second, the deep convolution generative adversarial network (DCGAN) is adopted to enlarge GASF fault characteristic expression image of SAF to achieve balance between normal and fault sample numbers. Finally, a LeNet-5 diagnostic model is trained to recognize SAF. The experimental results show that this method efficiently improves the SAF of photovoltaic arrays identification accuracy to 99.5% and has great anti-interference ability.
    Key words: photovoltaic array; series arc fault; Gramian angular summation field; deep convolution generative adversarial network
 
參考文獻
[1] 李博彤,李明睿,劉夢晴. 基于通徑分析和相空間重構(gòu)的光伏發(fā)電預(yù)測模型[J] . 電測與儀表,2022,59(11):79-87.
[2] DHAR S, PATNAIK R K, DASH P K.Fault detection and location of photo voltaic based DC microgrid using differential protection strategy[J].IEEE Transactions on Smart Grid,2018,9(5):4303-4312.
[3] 屈建宇,馬龍濤,陳思磊,等. 光伏系統(tǒng)直流串聯(lián)故障電弧檢測方法[J] . 電網(wǎng)與清潔能源,2021,37(3):125-130.
[4] AMIRI A, SAMET H, GHANBARI T.Recurrence Plots based method for detecting series arc faults inphotovoltaic systems[J].IEEE Transactions on Industrial Electronics,2022,69(6):6308-6315.
[5] 陳永輝,熊蘭,范禹邑,等. 基于互感器電壓信號的光伏電弧故障檢測方法[J] . 太陽能學(xué)報,2021,42(10):68-75.
[6] 邸振國,熊慶,張琛,等. 基于加權(quán)差分電流的直流故障電弧檢測方法[J] . 西安交通大學(xué)學(xué)報,2022,56(5):141-148.
[7] AHMADI M , SAMET H , GHANBARI T . A new method for detecting series arc fault in photovoltaic systems based on the blind-source separation[J].IEEE Transactions on Industrial Electronics,2020,67(6) :5041-5049.
[8] LU S, MA R, SIROJAN T, et al.Lightweight transfer nets and adversarial data augmentation for photovoltaic series arc fault detection with limited fault data[J].International Journal of Electrical Power & Energy Systems,2021,130 :107035.
[9] LU S, SIROJAN T, PHUNG B T, et al.DA-DCGAN:An effective methodology for DC series arc fault diagnosis in photovoltaic systems[J].IEEE Access,2019,7:45831-45840.
[10] LIU S, DONG L, LIAO X, et al.Application of the variational mode decomposition-based time and time–frequency domain analysis on series DC arc fault detection of photovoltaic arrays[J].IEEE Access,2019,7:126177-126190.
[11] 鄭煒,林瑞全,王俊,等. 基于 GAF 與卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動分類[J] . 電力系統(tǒng)保護與控制,2021,49(11):97-104.
[12] YIN J , XU M , ZHENG H . Fault diagnosis of bearing based on symbolic aggregate approximation and Lempel-Ziv[J].Measurement,2019,138:206-216.
[13] 裴莉莉,孫朝云,孫靜,等. 基于 DCGAN 的路面裂縫圖像生成方法[J]. 中南大學(xué)學(xué)報(自然科學(xué)版),2021,52(11):3899-3906.
[14] 趙小強,羅維蘭. 改進卷積 Lenet-5 神經(jīng)網(wǎng)絡(luò)的軸承故障診斷方法[J] . 電子測量與儀器學(xué)報,2022,36(6):113-125.
[15] LU S B, PHUNG B T, ZHANG D.A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems[J].Renewable and Sustainable Energy Reviews,2018,89:88-98.