參考文獻(xiàn)
[1] 盛戈皞,錢勇,羅林根,等. 面向新型電力系統(tǒng)的電力設(shè)備運(yùn)行維護(hù)關(guān)鍵技術(shù)及其應(yīng)用展望[J] . 高電壓技術(shù),2021,47(9):3072-3084.
[2] 江秀臣,許永鵬,李曜丞,等. 新型電力系統(tǒng)背景下的輸變電數(shù)字化轉(zhuǎn)型[J] . 高電壓技術(shù),2022,48(1):1-10.
[3] 梁永亮,郭漢琮,薛永端. 基于特征氣體關(guān)聯(lián)特征的變壓器故障診斷方法[J] . 高電壓技術(shù),2019,45(2):386-392.
[4] 張丞鳴,謝菊芳,胡東,等. 基于 QPSO-SVM 與 DGA 五邊形解釋工具的變壓器故障診斷方法[J] . 高壓電器,2021,57(12):117-124.
[5] 徐龍舞,張英,張倩,等. 基于正交實(shí)驗(yàn)法改進(jìn)的蝠鲼算法優(yōu)化 BP 在變壓器故障診斷上的研究[J] .南方電網(wǎng)技術(shù),2022,16(7):46-54.
[6] WU Y H, SUN X B, ZHANG Y, et al.A Power Transformer Fault Diagnosis Method-Based Hybrid Improved Seagull Optimization Algorithm and Support Vector Machine[J].IEEE Access,2022,10:17268-17286.
[7] 劉仲民,翟玉曉,張?chǎng)?,? 基于 DBN-IFCM 的變壓器故障診斷方法[J] . 高電壓技術(shù),2020,46(12):4258-4265.
[8] YANG X H, CHEN W K, LI A Y, et al.BAPNN-based methods for power transformer fault diagnosis[J].Advanced Engineering Informatics,2019,39:178-185.
[9] 謝國(guó)民,倪樂水,曹媛. 基于 VSRP 與 β-GWO-SVM 的變壓器故障辨識(shí)方法[J] . 高電壓技術(shù),2021,47(10):3635-3641.
[10] 蘇磊,陳璐,徐鵬,等. 基于深度信念網(wǎng)絡(luò)的變壓器運(yùn)行狀態(tài)分析[J] . 高壓電器,2021,57(2):56-62.
[11] 廖偉涵,郭創(chuàng)新,金宇,等. 基于四階段預(yù)處理與 GBDT 的油浸式變壓器故障診斷方法[J]. 電網(wǎng)技術(shù),2019,43(6):2195-2203.
[12] HUANG Z K,YANG C H,ZHOU X J, et al.A Hybrid Feature Selection Method Based on Binary State Transition Algorithm and ReliefF[J].IEEE Journal of Biomedical and Health Informatics,2019,23(5) :1888-1898.
[13] PENG H C, LONG F H, DING C.Feature selection based on mutual information criteria of max-dependency , max-relevance , and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8) :1226-1238.
[14] LAITH A, DALIA Y, MOHAMED A E, et al.Aquila Optimizer : A Novel Meta-Heuristic Optimization Algorithm[J] . Computers & Industrial Engineering,2021,157:107250.
[15] 王雨虹,王志中,付華,等. 多策略改進(jìn)麻雀算法與 BiLSTM 的變壓器故障診斷研究[J]. 儀器儀表學(xué)報(bào),2022,43(3):87-97.
[16] TANG A D , TANG S Q , HAN T , et al . A Modified Slime Mould Algorithm for Global Optimization[J].Computational Intelligence and Neuroscience,2021,2021:2298215.
[17] 單亞峰,段金鳳,付華,等. 基于 SSA-AdaBoost-SVM 的變壓器故障診斷[J] . 控制工程,2022,29(2):280-286.
[18] 尹金良. 基于相關(guān)向量機(jī)的油浸式電力變壓器故障診斷方法研究[D]. 北京:華北電力大學(xué),2013.
[19] 李春茂,周妺末,劉亞婕,等. 基于鄰域粗糙集與多核支持向量機(jī)的變壓器多級(jí)故障診斷[J] . 高電壓技術(shù),2018,44(11):3474-3482.