Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于DWT-PCA-LIBSVM的電能質(zhì)量擾動(dòng)分類方法

來源:電工電氣發(fā)布時(shí)間:2023-04-01 08:01 瀏覽次數(shù):395

基于DWT-PCA-LIBSVM的電能質(zhì)量擾動(dòng)分類方法

李家俊1,吳建軍1,陳武2,鐘建偉2
(1 國(guó)網(wǎng)湖北省電力有限公司恩施供電公司,湖北 恩施 445000;
2 湖北民族大學(xué) 智能科學(xué)與工程學(xué)院,湖北 恩施 445000)
 
    摘 要:針對(duì)傳統(tǒng)電能質(zhì)量擾動(dòng)分類方法中特征混疊和分類精確度低等問題,提出一種基于 DWTPCA-LIBSVM 的擾動(dòng)分類方法。對(duì)于常見的 9 種電能質(zhì)量擾動(dòng)信號(hào),利用離散小波變換 (DWT) 提取不同擾動(dòng)信號(hào)的特征向量,并將其按比例劃分成訓(xùn)練集和測(cè)試集;采用主成分分析 (PCA) 方法將訓(xùn)練集和測(cè)試集數(shù)據(jù)降維處理;基于 LIBSVM 工具箱構(gòu)建電能質(zhì)量擾動(dòng)分類模型進(jìn)行分類識(shí)別。仿真實(shí)驗(yàn)結(jié)果表明:該方法能有效識(shí)別典型的 9 種電能質(zhì)量擾動(dòng)信號(hào)(包括兩種復(fù)合擾動(dòng)),驗(yàn)證了該方法對(duì)電能質(zhì)量擾動(dòng)信號(hào)分類的有效性。
    關(guān)鍵詞: 電能質(zhì)量;離散小波變換;主成分分析;支持向量機(jī)
    中圖分類號(hào):TM60     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)03-0020-05
 
Power Quality Disturbance Classification Based on DWT-PCA-LIBSVM
 
LI Jia-jun1, WU Jian-jun1, CHEN Wu2, ZHONG Jian-wei2
(1 Enshi Power Supply Company, State Grid Hubei Electric Power Co., Ltd, Enshi 445000, China;
2 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: The traditional power quality disturbance classification has disadvantages of overlapping characteristics and low classification accuracy, so a new disturbance classification method based on DWT-PCA-LIBSVM is proposed. The paper adopts Discrete Wavelet Transform (DWT) to extract feature vectors of nine common power quality disturbance signals, and divides them into training sets and testing sets in proportion. Then, Principal Component Analysis (PCA) is used to reduce data dimension of training sets and testing sets, and power quality disturbance classification model is built to classify and recognize signals based on LIBSVM toolbox. The simulation results show that this method can efficiently identify nine typical power quality disturbance signals (including two composite disturbances), and verify its effectiveness of classification.
    Key words: power quality; discrete wavelet transform; principal component analysis; support vector machine
 
參考文獻(xiàn)
[1] 汪飛,全曉慶,任林濤. 電能質(zhì)量擾動(dòng)檢測(cè)與識(shí)別方法研究綜述[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(12):4104-4120.
[2] 黃建明,瞿合祚,李曉明. 基于短時(shí)傅里葉變換及其譜峭度的電能質(zhì)量混合擾動(dòng)分類[J] . 電網(wǎng)技術(shù),2016,40(10):3184-3191.
[3] 布左拉·達(dá)吾提,帕孜來·馬合木提,董永昌,葛震君. 一種改進(jìn) EMD-SVD 算法的暫態(tài)電能質(zhì)量擾動(dòng)信號(hào)消噪研究[J] . 電測(cè)與儀表,2021,58(12):69-75.
[4] 尹柏強(qiáng),陳奇彬,李兵,佐磊. 基于改進(jìn) Kaiser 窗快速 S 變換和 LightGBM 的電能質(zhì)量擾動(dòng)識(shí)別與分類新方法[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(24):8372-8383.
[5] ANGRISANI L, DAPONTE P, APUZZO M D, TESTA A.A measurement method based on thewavelet transform for power qualityanalysis[J].IEEE Transactions Power Delivery,1998,13(4):990-998.
[6] 武晨晨,苗霽,祝佳楠,張文惠. 遺傳算法優(yōu)化 BP 神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量預(yù)測(cè)預(yù)警研究[J] . 電工電氣,2021(9):18-22.
[7] 李祖明,呂干云,陳諾,裴哲遠(yuǎn),丁雨昊,龔彧. 基于混沌集成決策樹的電能質(zhì)量復(fù)合擾動(dòng)識(shí)別[J] .電力系統(tǒng)保護(hù)與控制,2021,49(21):18-27.
[8] 翁國(guó)慶,朱雙雙,閆翠萍,黃飛騰,舒俊鵬. 基于模糊專家系統(tǒng)的電能質(zhì)量治理決策支持系統(tǒng)[J] .浙江工業(yè)大學(xué)學(xué)報(bào),2019,47(2):210-218.
[9] 李波,曹敏,李仕林,李春陽(yáng). 基于 WT 和 GA-SVM 的電能質(zhì)量擾動(dòng)識(shí)別方法[J] . 電力電子技術(shù),2020,54(3):52-55.
[10] 莊夏. 基于 DWT 和 RNN 的無刷直流電動(dòng)機(jī)軸承故障檢測(cè)方法[J]. 微特電機(jī),2017,45(6):17-21.
[11] 任軒,汪慶年,尚寶,姜宏偉,常樂. 基于混合神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)方法[J] . 電子測(cè)量技術(shù),2022,45(14):71-77.
[12] 黃南天,徐殿國(guó),劉曉勝. 基于 S 變換與 SVM 的電能質(zhì)量復(fù)合擾動(dòng)識(shí)別[J] . 電工技術(shù)學(xué)報(bào),2011,26(10):23-30.
[13] CHEN Tian, JU Sihang, REN Fuji, FAN Mingyan,GU Yu.EEG emotion recognition model based on the LIBSVM classifier[J].Measurement,2020,164(5):108047.
[14] 鄭煒,林瑞全,王俊,李振嘉. 基于 GAF 與卷積神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量擾動(dòng)分類[J] . 電力系統(tǒng)保護(hù)與控制,2021,49(11):97-104.