Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

閥區(qū)故障引起的接地極不平衡保護(hù)動(dòng)作分析

來(lái)源:電工電氣發(fā)布時(shí)間:2023-05-27 16:27 瀏覽次數(shù):379

閥區(qū)故障引起的接地極不平衡保護(hù)動(dòng)作分析

賀紅資
(中國(guó)南方電網(wǎng)有限責(zé)任公司超高壓輸電公司大理局,云南 大理 671000)
 
    摘 要:介紹了一起直流工程閥區(qū)直流穿墻套管對(duì)地閃絡(luò)故障引起的眾多保護(hù)動(dòng)作及直流控制保護(hù)系統(tǒng)響應(yīng)過(guò)程,對(duì)該故障所引起的接地極電流不平衡保護(hù)動(dòng)作進(jìn)行了分析,找出了導(dǎo)致接地極電流不平衡的故障點(diǎn)及引起接地極故障的原因,即穿墻套管接地引起接地極區(qū)域過(guò)壓,進(jìn)而造成放電間隙不夠的接地極線(xiàn)路招弧角被擊穿放電,并提出了對(duì)損壞的招弧角進(jìn)行放電間隙的調(diào)整或更換等優(yōu)化建議。
    關(guān)鍵詞: 直流穿墻套管;閥區(qū)故障;接地極電流不平衡保護(hù);招弧角擊穿
    中圖分類(lèi)號(hào):TM721.1     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)05-0044-04
 
Analysis of Earth Electrode Unbalance Protective
Actions Caused by Valve Area Failures
 
HE Hong-zi
(Dali Bureau of China Southern Power Grid EHV Power Transmission Company, Dali 671000, China)
 
    Abstract: Protective actions and responses of DC control and protection system caused by the flashover failure to the ground from DC wall bushing in the valve area of the DC engineering are introduced. Then, the paper makes analysis of earth electrode current unbalance protective actions caused by this failure and finds out its fault point and causes. The reason for the failure is that the grounding of wall bushing leads to overvoltage in the earth electrode area, which causes the breakdown to the arcing horn of earth electrode lines with inadequate discharge gap. Therefore, to solve this problem, optimization suggestions such as adjustment or replacement of discharge gap for the damaged arcing horn are given.
    Key words: DC wall bushing; valve area failure; earth electrode current unbalance protective; arcing horn breakdown
 
參考文獻(xiàn)
[1] 戴志輝,劉寧寧,何永興,等. 基于直流濾波環(huán)節(jié)暫態(tài)能量比的高壓直流線(xiàn)路縱聯(lián)保護(hù)[J] . 電工技術(shù)學(xué)報(bào),2020,35(9):1985-1998.
[2] 楊亞宇,邰能靈,范春菊,等. 基于計(jì)算電阻的高壓直流輸電線(xiàn)路縱聯(lián)保護(hù)[J] . 電工技術(shù)學(xué)報(bào),2017,32(7):84-94.
[3] 李林,付廣旭,龔飛,等. 接地極引線(xiàn)環(huán)流導(dǎo)致站內(nèi)接地過(guò)流保護(hù)動(dòng)作案例分析[J] . 電氣技術(shù),2020,21(8):118-124.
[4] 王永勝,李新宇,賈軒濤,等. 基于大小量程的特高壓換流站接地極不平衡保護(hù)方案研究[J] . 電氣技術(shù),2020,21(1):102-109.
[5] 陶瑜,馬為民,馬玉龍,等. 特高壓直流輸電系統(tǒng)的控制特性[J]. 電網(wǎng)技術(shù),2006,30(22):1-4.
[6] 鄭揚(yáng)亮,冉學(xué)彬,劉更生. 直流輸電接地極線(xiàn)路招弧角有關(guān)問(wèn)題的分析[J] . 高電壓技術(shù),2008,34(7):1513-1516.
[7] 李健,李顯東,李化,等. 特高壓直流接地極線(xiàn)路招弧角絕緣配合試驗(yàn)研究[J] . 高電壓技術(shù),2016,42(11):3481-3487.
[8] 張馮碩,吳高波,李健,等. 特高壓直流接地極線(xiàn)路絕緣配合研究[J] . 電力建設(shè),2015,36(2):86-90.
[9] 江渭濤. 基于直流保護(hù)策略對(duì)特高壓換流站過(guò)電壓與絕緣配合影響的仿真分析[J] . 電子測(cè)試,2016(23):52.
[10] 張志宏.±800 kV 特高壓直流輸電控制保護(hù)系統(tǒng)分析[J]. 通信電源技術(shù),2019,36(12):36-37.