Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

基于CGM-IPSO-LSSVM的短期風(fēng)電功率預(yù)測(cè)

來(lái)源:電工電氣發(fā)布時(shí)間:2023-07-01 09:01 瀏覽次數(shù):363

基于CGM-IPSO-LSSVM的短期風(fēng)電功率預(yù)測(cè)

康義1,羅利偉2
(1 華北水利水電大學(xué) 電氣工程學(xué)院,河南 鄭州 450045;
2 鄭州博努力計(jì)算機(jī)科技有限公司,河南 鄭州 450001)
 
    摘 要:為了電網(wǎng)的安全運(yùn)行,應(yīng)充分考慮氣象等相關(guān)因素對(duì)風(fēng)電的影響程度來(lái)預(yù)測(cè)短期風(fēng)電功率。提出采用改進(jìn)灰色模型 (CGM)、改進(jìn)粒子群算法 (IPSO) 和最小二乘支持向量機(jī) (LSSVM) 混合的預(yù)測(cè)方法。CGM-IPSO-LSSVM 方法采用灰色模型的關(guān)聯(lián)性分析不同時(shí)刻的氣象等相關(guān)因素的數(shù)據(jù),根據(jù)分析所得的氣象等相關(guān)因素?cái)?shù)據(jù)來(lái)確定風(fēng)參量的權(quán)重,再根據(jù)權(quán)重運(yùn)用最小二乘支持向量機(jī)對(duì)風(fēng)向量進(jìn)行估計(jì),并以風(fēng)向量的估計(jì)值為依據(jù),以收斂性更好的改進(jìn)粒子群算法對(duì) CGM 模型進(jìn)行優(yōu)化,求解出最終預(yù)測(cè)結(jié)果,對(duì)預(yù)測(cè)結(jié)果出現(xiàn)的誤差,采用傅里葉殘差序列進(jìn)行補(bǔ)償。實(shí)驗(yàn)結(jié)果表明,提出的 CGM-IPSO-LSSVM 預(yù)測(cè)方法考慮了多因素影響和克服了參數(shù)選擇優(yōu)化的問(wèn)題,其預(yù)測(cè)精度在要求的范圍內(nèi)大幅提高,為風(fēng)電并網(wǎng)的調(diào)度提供了有力依據(jù),降低了棄風(fēng)率。
    關(guān)鍵詞: 短期風(fēng)電功率預(yù)測(cè);改進(jìn)灰色模型;改進(jìn)粒子群算法;最小二乘支持向量機(jī);融合預(yù)測(cè)
    中圖分類號(hào):TM614 ;TM715     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)06-0022-05
 
Short-Term Wind Power Prediction Based on CGM-IPSO-LSSVM
 
KANG Yi1, LUO Li-wei2
(1 School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
2 Zhengzhou Bonuli Computer Technology Co., Ltd, Zhengzhou 450001, China)
 
    Abstract: In order to ensure the safe operation of the power grid, the influence of meteorological and other related factors on wind power should be fully considered to predict short-term wind power. Therefore, this paper proposes a hybrid prediction method using improved Cotes Grey Model(CGM), Improved Particle Swarm Optimization(IPSO) and Least Squares Support Vector Machine(LSSVM). The CGMIPSO-LSSVM method first uses the correlation of grey model to analyze the meteorological data and other related factors at different time.Then, according to the above data, the weight of wind parameters is determined. Third, based on the above weight, the least squares support vector machine is used to estimate the wind vector. Fourth, the improved particle swarm optimization with better convergence is adopted to optimize the CGM model to obtain the final prediction result on the basis of estimated values of the wind vector. Finally, the error of the prediction result is compensated by the Fourier residual sequence. The experiment results show that the CGM-IPSO-LSSVM prediction method takes the influence of multiple factors into consideration and overcomes the problem of parameter selection optimization. It not only greatly improves prediction accuracy within the required range to provide strong basis for the scheduling of wind power integration, but also reduces the abandoned wind rate.
    Key words: short-term wind power prediction; improved cotes grey model; improved particle swarm optimization; least squares support vector machine; fusion prediction
 
參考文獻(xiàn)
[1] 薛禹勝,雷興,薛峰,等. 關(guān)于風(fēng)電不確定性對(duì)電力系統(tǒng)影響的評(píng)述[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(29):5029-5040.
[2] 馮雙磊,王偉勝,劉純,等. 基于物理原理的風(fēng)電場(chǎng)短期風(fēng)速預(yù)測(cè)研究[J] . 太陽(yáng)能學(xué)報(bào),2011,32(5):611-616.
[3] WU Yuankang , SU Poen , HONG Jingshan .Stratification-based wind power forecasting in a high-penetration wind power system using a hybrid model[J].IEEE Transactions on Industry Applications,2015,52(3):2016-2030.
[4] FAZELPOUR F, TARASHKAR N, ROSEN M A.Short-term wind speed forecasting using artificialneural networks for Tehran,Iran[J].International Journal of Energy and Environmenta Engineering,2016,7:377-390.
[5] WANG Huaizhi, LI Gangqiang, WANG Guibing, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J].Applied Energy,2017,188:56-70.
[6] 王蘭,王晞,李華強(qiáng),等. 基于相空間重構(gòu)和誤差補(bǔ)償?shù)娘L(fēng)電功率混沌時(shí)間序列預(yù)測(cè)模型[J] . 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2017,29(9):65-69.
[7] BOTTERUD A, ZHOU Z, WANG J, et al.Wind power trading under uncertainty in LMP markets[J].IEEE Transactions on Power Systems,2012,27(2):894-903.
[8] 薛禹勝,郁琛,趙俊華,等. 關(guān)于短期及超短期風(fēng)電功率預(yù)測(cè)的評(píng)述[J] . 電力系統(tǒng)自動(dòng)化,2015,39(6):141-151.
[9] 琚垚,祁林,劉帥. 基于改進(jìn)烏鴉算法和 ESN 神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè)[J] . 電力系統(tǒng)保護(hù)與控制,2019,47(4):58-64.
[10] 陳昊,張建忠,許超,等. 基于多重離群點(diǎn)平滑轉(zhuǎn)換自回歸模型的短期風(fēng)電功率預(yù)測(cè)[J] . 電力系統(tǒng)保護(hù)與控制,2019,47(1):73-79.
[11] 李俊卿,李秋佳,石天宇,等. 基于數(shù)據(jù)挖掘的風(fēng)電功率預(yù)測(cè)特征選擇方法[J] . 電測(cè)與儀表,2019,56(10):87-92.
[12] 武小梅,林翔,謝旭泉,等. 基于 VMD-PE 和優(yōu)化相關(guān)向量機(jī)的短期風(fēng)電功率預(yù)測(cè)[J] . 太陽(yáng)能學(xué)報(bào),2018,39(11):3277-3285.
[13] 程啟明,陳路,程尹曼,等. 基于 EEMD 和 LS-SVM 模型的風(fēng)電功率短期預(yù)測(cè)方法[J] . 電力自動(dòng)化設(shè)備,2018,38(5):27-35.
[14] 宮毓斌,滕歡. 基于 GOA-SVM 的短期負(fù)荷預(yù)測(cè)[J].電測(cè)與儀表,2019,56(14):12-16.
[15] 魏立兵,趙峰,王思華. 基于人群搜索算法優(yōu)化參數(shù)的支持向量機(jī)短期電力負(fù)荷預(yù)測(cè)[J] . 電測(cè)與儀表,2016,53(8):45-49.
[16] 熊軍華, 康義, 王亭嶺, 等. 一種基于灰色模型和支持向量機(jī)的短期風(fēng)電功率預(yù)測(cè)方法:CN112001537A[P].2020-11-27.
[17] 康義,師劉俊,郭剛. 基于 WT-IPSO-BPNN 的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)[J] . 電氣技術(shù),2021,22(1):23-28.