Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

計及電價優(yōu)化的電動汽車與風電協(xié)同優(yōu)化策略

來源:電工電氣發(fā)布時間:2023-07-01 10:01 瀏覽次數(shù):350

計及電價優(yōu)化的電動汽車與風電協(xié)同優(yōu)化策略

潘韋如1,魏哲2,孫琪3,黃文龍3,王曉東3
(1 魯東大學 蔚山船舶與海洋學院,山東 煙臺 264025;
2 國網(wǎng)山東省電力公司超高壓公司,山東 濟南 250118;
3 國網(wǎng)山東省電力公司淄博供電分公司,山東 淄博 255000)
 
    摘 要:針對風電出力間歇性和大量電動汽車隨機接入配電網(wǎng)的充放電行為會造成配電網(wǎng)功率波動等問題,提出了基于動態(tài)分時電價的電動汽車與風電協(xié)同優(yōu)化調(diào)度策略。建立了動力電池損耗和風電出力模型,完善了用戶和電網(wǎng)兩側(cè)的需求;考慮電網(wǎng)穩(wěn)定性以及不同時段內(nèi)電動汽車用戶進行充放電的成本與收益,構(gòu)建了以用戶充電成本、配電網(wǎng)綜合負荷波動以及網(wǎng)損成本最小為目標的數(shù)學模型。為解決多變量、多目標約束的優(yōu)化問題,采取最大模糊滿意度法將多目標問題進行歸一化處理;利用改進的正余弦優(yōu)化算法,將充、放電功率和充、放電電價等作為變量進行尋優(yōu)。IEEE 33 節(jié)點算例多場景仿真結(jié)果表明,所提策略可以隨電動汽車入網(wǎng)信息的變化動態(tài)調(diào)整電價,增強風電消納能力,同時在減小峰谷差、減少充電成本和降低網(wǎng)損等方面效果明顯。
    關(guān)鍵詞: 電動汽車;風電協(xié)同優(yōu)化調(diào)度;動態(tài)電價;正余弦優(yōu)化算法
    中圖分類號:TM715 ;U469.72     文獻標識碼:A     文章編號:1007-3175(2023)06-0014-08
 
Collaborative Optimal Strategy of Electric Vehicles and Wind Power with the
Consideration of Electricity Price Optimization
 
PAN Wei-ru1, WEI Zhe2, SUN Qi3, HUANG Wen-long3, WANG Xiao-dong3
(1 Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China;
2 State Grid Shandong Electric Extrahigh Voltage Company, Jinan 250118, China;
3 State Grid Shandong Electric Power Company Zibo Power Supply Branch Company, Zibo 255000, China)
 
    Abstract: In order to solve the problems of intermittent wind power output and distribution network power fluctuation caused by a large number of electric vehicles randomly accessing to the distribution network to charge and discharge, the paper proposes a collaborative optimal scheduling strategy of electric vehicles and wind power based on dynamic time-of-use price. First, models of power battery loss and wind power output are established to improve the needs of both users and power grids. Second, with the consideration of power grid stability and costs and benefits of electric vehicle users’ charging and discharging in different periods, a mathematical model is built to realize the goal of minimizing the user charging costs,the comprehensive load fluctuation of the distribution network and the network loss costs. Third, to optimize the multivariable and multi-objective constraints, the maximum fuzzy satisfaction method is adopted to normalize the multi-objective problem; then, the improved sine cosine optimization algorithm is adopted to optimize the charging and discharging power and price which are used as variables. According to the multi-scenario simulation results of IEEE 33 node example, this strategy is able to dynamically adjust the electricity price with the change of electric vehicle network access, enhance the wind power consumption, and have better effects on reducing peak valley difference, charging cost and network loss.
    Key words: electric vehicles; wind power collaborative optimal scheduling; dynamic price; sine cosine optimization algorithm
 
參考文獻
[1] IEA(2021).Global EV Outlook 2021[EB/OL].(2021-1-06)[2022-09-02].https://www.iea.org/reports/global-ev-outlook-2021.2021-04/2022-11-1.
[2] 沈國輝,陳光,趙宇,等. 基于雙目標分層優(yōu)化和 TOPSIS 排序的電動汽車有序充電策略[J]. 電力系統(tǒng)保護與控制,2021,49(11):115-123.
[3] 陸凌蓉,文福拴,薛禹勝,等. 電動汽車提供輔助服務(wù)的經(jīng)濟性分析[J] . 電力系統(tǒng)自動化,2013,37(14):43-49.
[4] 周椿奇,向月,張新,等. V2G 輔助服務(wù)調(diào)節(jié)潛力與經(jīng)濟性分析:以上海地區(qū)為例[J] . 電力自動化設(shè)備,2021,41(8):135-141.
[5] 任麗娜,李相學. 考慮用戶行為的電動汽車充電電價制定策略[J] . 燕山大學學報,2021,45(6):505-513.
[6] 常方宇,黃梅,張維戈. 分時充電價格下電動汽車有序充電引導策略[J] . 電網(wǎng)技術(shù),2016,40(9):2609-2615.
[7] CHEN Wen, GUO Chunlin, LI Zongfeng, et al.Research of Time-of-Use Tariff Considering Electric Vehicles Charging Demands[J].Advanced Materials Research,2014,953-954:1354-1358.
[8] 高亞靜,呂孟擴,王球,等. 基于離散吸引力模型的電動汽車充放電最優(yōu)分時電價研究[J] . 中國電機工程學報,2014,34(22):3647-3653.
[9] 李怡然,張姝,肖先勇,等. V2G 模式下計及供需兩側(cè)需求的電動汽車充放電調(diào)度策略[J] . 電力自動化設(shè)備,2021,41(3):129-135.
[10] 郝麗麗,王國棟,王輝,等. 考慮電動汽車入網(wǎng)輔助服務(wù)的配電網(wǎng)日前調(diào)度策略[J] . 電力系統(tǒng)自動化,2020,44(14):35-43.
[11] 徐智威,胡澤春,宋永華,等. 基于動態(tài)分時電價的電動汽車充電站有序充電策略[J] . 中國電機工程學報,2014,34(22):3638-3646.
[12] ZHENG Yuanshuo, LUO Jingtang, YANG Xiaolong,et al . Ntelligent Regulation on Demand Response for Electric Vehicle Charging: A Dynamic Game Method[J].IEEE Access,2020,8:66105-66115.
[13] ZHOU Chengke, QIAN Kejun, ALLAN Malcolm, et al.Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems[J].IEEE Transactions on Energy Conversion,2011,26(4):1041-1050.
[14] 程杉,楊堃,魏昭彬,等. 計及電價優(yōu)化和放電節(jié)制的電動汽車充電站有序充放電調(diào)度[J] . 電力系統(tǒng)保護與控制,2021,49(11):1-8.
[15] 張書盈,孫英云. 考慮分時電價和電池損耗的電動汽車集群 V2G 響應(yīng)成本分析[J] . 電力系統(tǒng)及其自動化學報,2017,29(11):39-46.
[16] 劉利兵,劉天琪,張濤,等. 計及電池動態(tài)損耗的電動汽車有序充放電策略優(yōu)化[J] . 電力系統(tǒng)自動化,2016,40(5):83-90.
[17] 田書欣,程浩忠,曾平良,等. 大型集群風電接入輸電系統(tǒng)規(guī)劃研究綜述[J] . 中國電機工程學報,2014,34(10):1566-1574.
[18] SUFYAN M, RAHIM N A, MUHAMMAD M A, et al.Charge coordination and battery lifecycle analysis of electric vehicles with V2G implementation[J].Electric Power Systems Research,2020,184:106307.
[19] 李國慶,翟曉娟,李揚,等. 基于改進蟻群算法的微電網(wǎng)多目標模糊優(yōu)化運行[J] . 太陽能學報,2018,39(8):2310-2317.
[20] MIRJALILI S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems[J].Knowledge-Based Systems,2016,96:120-133.
[21] TIZHOOSH H R.Opposition-Based Learning: A New Scheme for Machine Intelligence[C]//International Conference on Computational Intelligence for Modelling , Control & Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce,2005:695-701.
[22] 韓江,閔杰. 基于精英反向?qū)W習的煙花爆炸式免疫遺傳算法[J] . 合肥工業(yè)大學學報(自然科學版),2020,43(4):433-437.
[23] 陳麗丹. 電動汽車廣泛接入對電網(wǎng)的影響及其調(diào)控策略研究[D]. 廣州:華南理工大學,2018.
[24] HOU Hui, XUE Mengya, XU Yan, et al.Multiobjective economic dispatch of a microgrid considering electric vehicle and transferable load[J].Applied Energy,2020,262(6):114489.
[25] 王睿,高欣,李軍良,等. 基于聚類分析的電動汽車充電負荷預測方法[J] . 電力系統(tǒng)保護與控制,2020,48(16):37-44.