Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于卷積神經(jīng)網(wǎng)絡(luò)的多源局部放電模式識(shí)別

來源:電工電氣發(fā)布時(shí)間:2023-10-28 09:28 瀏覽次數(shù):254

基于卷積神經(jīng)網(wǎng)絡(luò)的多源局部放電模式識(shí)別

余祉宏1,邵振華2,馮旗1
(1 溫州大學(xué) 電氣與電子工程學(xué)院,浙江 溫州 325035;
 2 閩江學(xué)院 計(jì)算機(jī)與控制工程學(xué)院,福建 福州 350108)
 
    摘 要:為驗(yàn)證開關(guān)柜多源局部放電直接分類的可行性,設(shè)計(jì)了四種典型局部放電模型,采集單局部放電源和雙局部放電源信號(hào),并繪制 PRPD 圖譜作為數(shù)據(jù)集,利用卷積神經(jīng)網(wǎng)絡(luò) (CNN) 模型進(jìn)行模式識(shí)別。實(shí)驗(yàn)以經(jīng)典模型的性能作為參考,再對(duì)表現(xiàn)較好的模型進(jìn)行優(yōu)化,得到最終模型。實(shí)驗(yàn)結(jié)果表明,優(yōu)化后的模型準(zhǔn)確率均超過98.5%,且訓(xùn)練時(shí)長較經(jīng)典模型明顯減少,適用于多源局部放電模式識(shí)別。
    關(guān)鍵詞: 多源局部放電;PRPD 圖譜;卷積神經(jīng)網(wǎng)絡(luò);模式識(shí)別
    中圖分類號(hào):TM835 ;TM85     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)10-0024-08
 
Multi-Source Partial Discharge Pattern Recognition Based on
Convolution Neural Network
 
YU Zhi-hong1, SHAO Zhen-hua2, FENG Qi1
(1 College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China;
2 College of Computer and Control Engineering, Minjiang University, Fuzhou 350108, China)
 
    Abstract: In order to verify the feasibility of directly classifying multi-source partial discharge in switchgears, four typical partial discharge models are designed. They collect signals of single and double partial discharge sources, draw PRPD map as the data set, and adopt the Convolution Neural Network(CNN) model to recognize patterns. The experiment, taking the performance of classical model as the reference,optimizes models with better performance to screen the final model. According to the experimental results, the optimized model has the accuracy of more than 98.5% with less training time, which is suitable for the pattern recognition of multi-source partial discharge.
    Key words: multi-source partial discharge; PRPD map; convolution neural network; pattern recognition
 
參考文獻(xiàn)
[1] DUAN Lian , HU Jun , ZHAO Gen , et al .Identification of partial discharge defects based on deep learning method[J].IEEE Transactions on Power Delivery,2019,34(4) :1557-1568.
[2] 唐志國, 唐銘澤, 李金忠, 等. 電氣設(shè)備局部放電模式識(shí)別研究綜述[J] . 高電壓技術(shù),2017,43(7) :2263-2277.
[3] 鄧興宇. 高壓開關(guān)柜局部放電檢測(cè)中的抗干擾技術(shù)研究[D]. 廣州:廣東工業(yè)大學(xué),2021.
[4] 陶加貴. 組合電器局部放電多信息融合辨識(shí)與危害性評(píng)估研究[D]. 重慶:重慶大學(xué),2013.
[5] 范路,陸云才,陶風(fēng)波,等. 人工智能在局部放電檢測(cè)中的應(yīng)用(二) :模式識(shí)別與狀態(tài)評(píng)估[J]. 絕緣材料,2021,54(7) :10-24.
[6] 黃亮,唐炬,凌超,等. 基于多特征信息融合技術(shù)的局部放電模式識(shí)別研究[J] . 高電壓技術(shù),2015,41(3) :947-955.
[7] 陳敬德,李峰,孫源文,等. 基于 KNN 和 MSR 的局部放電模式識(shí)別研究[J] . 電氣技術(shù),2018,19(1) :10-14.
[8] 周文潮,周子涵,靳沖. 基于 SVM 的變壓器局部放電故障診斷研究[J] . 鐵路通信信號(hào)工程技術(shù),2022,19(S1) :137-140.
[9] FENG X Y, HU X L, YONG J, et al.Application of Improved BPNN Algorithm in GIS Insulation Defect Type Identification[C]//Journal of Physics Conference Series,2019.
[10] 陳繼明,許辰航,李鵬,等. 基于時(shí)頻分析與分形理論的 GIS 局部放電模式識(shí)別特征提取方法[J] .高電壓技術(shù),2021,47(1) :287-295.
[11] SUN Shengya, SUN Yuanyuan, XU Gongde, et al.Partial Discharge Pattern Recognition of Transformers Based on the Gray-Level Co-Occurrence Matrix of Optimal Parameters[J].IEEE Access,2021,9 :102422-102432.
[12] FIRUZI K, VAKILIAN M, PHUNG B T, et al.Partial discharges pattern recognition of transformer defect model by LBP & HOG features[J].IEEE Transactions on Power Delivery,2019,34(2) :542-550.
[13] BARRIOS S, BULDAIN D, COMECH M P, et al.Partial discharge classification using deep learning methods—Survey of recent progress[J].Energies,2019,12(13) :2485.
[14] 黃雪莜,熊俊,張宇,等. 基于殘差卷積神經(jīng)網(wǎng)絡(luò)的開關(guān)柜局部放電模式識(shí)別[J] . 中國電力,2021,54(2) :44-51.
[15] 陳健寧,周遠(yuǎn)翔,白正,等. 基于多通道卷積神經(jīng)網(wǎng)絡(luò)的油紙絕緣局部放電模式識(shí)別方法[J] . 高電壓技術(shù),2022,48(5) :1705-1715.
[16] 孫抗,軒旭陽,劉鵬輝,等. 小樣本下基于 CNN-DCGAN 的電纜局部放電模式識(shí)別方法[J] . 電子科技,2022,35(7) :7-13.
[17] TANG Zhiguo , CAO Zhi . Application of Convolutional Neural Network Transfer Learning in Partial Discharge Pattern Recognition[C]//2020 IEEE International Conference on High Voltage Engineering and Application(ICHVE),2020.
[18] GAO Angran, ZHU Yongli, CAI Weihao, et al.Pattern recognition of partial discharge based on VMD-CWD spectrum and optimized CNN with cross-layer feature fusion[J].IEEE Access,2020,8 :151296-151306.
[19] 朱霄珣,林佳偉,劉寶平,等. 基于 Iradon-CNN 的變壓器局部放電狀態(tài)識(shí)別方法[J] . 電子測(cè)量技術(shù),2022,45(17) :36-42.
[20] 謝榮斌,楊超,申強(qiáng),等. TEV 與 HFCT 法測(cè)量開關(guān)柜局部放電的特性對(duì)比[J] . 中國電力,2022,55(3) :37-47.
[21] 吳閩,蔣偉,羅穎婷,等. 基于改進(jìn) SSD 的 GIS 多源局放模式識(shí)別[J] . 高電壓技術(shù),2023,49(2) :812-821.
[22] MANTACH S, ASHRAF A, JANANI H, et al.A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set[J].Energies,2021,14(5) :1355.
[23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.