參考文獻(xiàn)
[1] DUAN Lian , HU Jun , ZHAO Gen , et al .Identification of partial discharge defects based on deep learning method[J].IEEE Transactions on Power Delivery,2019,34(4) :1557-1568.
[2] 唐志國, 唐銘澤, 李金忠, 等. 電氣設(shè)備局部放電模式識別研究綜述[J] . 高電壓技術(shù),2017,43(7) :2263-2277.
[3] 鄧興宇. 高壓開關(guān)柜局部放電檢測中的抗干擾技術(shù)研究[D]. 廣州:廣東工業(yè)大學(xué),2021.
[4] 陶加貴. 組合電器局部放電多信息融合辨識與危害性評估研究[D]. 重慶:重慶大學(xué),2013.
[5] 范路,陸云才,陶風(fēng)波,等. 人工智能在局部放電檢測中的應(yīng)用(二) :模式識別與狀態(tài)評估[J]. 絕緣材料,2021,54(7) :10-24.
[6] 黃亮,唐炬,凌超,等. 基于多特征信息融合技術(shù)的局部放電模式識別研究[J] . 高電壓技術(shù),2015,41(3) :947-955.
[7] 陳敬德,李峰,孫源文,等. 基于 KNN 和 MSR 的局部放電模式識別研究[J] . 電氣技術(shù),2018,19(1) :10-14.
[8] 周文潮,周子涵,靳沖. 基于 SVM 的變壓器局部放電故障診斷研究[J] . 鐵路通信信號工程技術(shù),2022,19(S1) :137-140.
[9] FENG X Y, HU X L, YONG J, et al.Application of Improved BPNN Algorithm in GIS Insulation Defect Type Identification[C]//Journal of Physics Conference Series,2019.
[10] 陳繼明,許辰航,李鵬,等. 基于時頻分析與分形理論的 GIS 局部放電模式識別特征提取方法[J] .高電壓技術(shù),2021,47(1) :287-295.
[11] SUN Shengya, SUN Yuanyuan, XU Gongde, et al.Partial Discharge Pattern Recognition of Transformers Based on the Gray-Level Co-Occurrence Matrix of Optimal Parameters[J].IEEE Access,2021,9 :102422-102432.
[12] FIRUZI K, VAKILIAN M, PHUNG B T, et al.Partial discharges pattern recognition of transformer defect model by LBP & HOG features[J].IEEE Transactions on Power Delivery,2019,34(2) :542-550.
[13] BARRIOS S, BULDAIN D, COMECH M P, et al.Partial discharge classification using deep learning methods—Survey of recent progress[J].Energies,2019,12(13) :2485.
[14] 黃雪莜,熊俊,張宇,等. 基于殘差卷積神經(jīng)網(wǎng)絡(luò)的開關(guān)柜局部放電模式識別[J] . 中國電力,2021,54(2) :44-51.
[15] 陳健寧,周遠(yuǎn)翔,白正,等. 基于多通道卷積神經(jīng)網(wǎng)絡(luò)的油紙絕緣局部放電模式識別方法[J] . 高電壓技術(shù),2022,48(5) :1705-1715.
[16] 孫抗,軒旭陽,劉鵬輝,等. 小樣本下基于 CNN-DCGAN 的電纜局部放電模式識別方法[J] . 電子科技,2022,35(7) :7-13.
[17] TANG Zhiguo , CAO Zhi . Application of Convolutional Neural Network Transfer Learning in Partial Discharge Pattern Recognition[C]//2020 IEEE International Conference on High Voltage Engineering and Application(ICHVE),2020.
[18] GAO Angran, ZHU Yongli, CAI Weihao, et al.Pattern recognition of partial discharge based on VMD-CWD spectrum and optimized CNN with cross-layer feature fusion[J].IEEE Access,2020,8 :151296-151306.
[19] 朱霄珣,林佳偉,劉寶平,等. 基于 Iradon-CNN 的變壓器局部放電狀態(tài)識別方法[J] . 電子測量技術(shù),2022,45(17) :36-42.
[20] 謝榮斌,楊超,申強(qiáng),等. TEV 與 HFCT 法測量開關(guān)柜局部放電的特性對比[J] . 中國電力,2022,55(3) :37-47.
[21] 吳閩,蔣偉,羅穎婷,等. 基于改進(jìn) SSD 的 GIS 多源局放模式識別[J] . 高電壓技術(shù),2023,49(2) :812-821.
[22] MANTACH S, ASHRAF A, JANANI H, et al.A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set[J].Energies,2021,14(5) :1355.
[23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.