Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于sViT的風(fēng)電場集電線故障區(qū)段定位

來源:電工電氣發(fā)布時(shí)間:2023-12-28 13:28 瀏覽次數(shù):188

基于sViT的風(fēng)電場集電線故障區(qū)段定位

劉富州,袁博文,呂桐,盧炳文,周杰,吳大明
(國網(wǎng)江蘇省電力有限公司鹽城供電分公司,江蘇 鹽城 224000)
 
    摘 要:為解決風(fēng)電場集電線單相接地故障后定位困難的問題,提出基于變分模態(tài)-小波變換 (VMD-CWT) 時(shí)頻譜聯(lián)合孿生視覺自注意力模型 (sViT) 的故障區(qū)段定位方法。分析發(fā)現(xiàn)故障區(qū)段與集電線故障電壓的 VMD-CWT 譜有密切關(guān)系,借助深度學(xué)習(xí)算法挖掘譜線與故障區(qū)段的關(guān)系可以實(shí)現(xiàn)集電線故障區(qū)段定位。借助 PSCAD/EMTDC 軟件搭建集電線模型,收集各類故障情況的數(shù)據(jù)后進(jìn)行 VMD-CWT 變換生成時(shí)頻譜;在訓(xùn)練集上搜索 sViT 網(wǎng)絡(luò)的最優(yōu)識別參數(shù),將這一網(wǎng)絡(luò)的分支用于測試集識別。仿真結(jié)果表明該方法對集電線多分支、混合短線有著良好的適應(yīng)能力,定位受到過渡電阻、噪音和故障相位角的影響較小。
    關(guān)鍵詞: sViT 網(wǎng)絡(luò);變分模態(tài)- 小波變換;風(fēng)電場集電線;故障區(qū)段定位
    中圖分類號:TM614 ;TM726     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2023)12-0029-08
 
Fault Section Location of Wind Farm Collector Line Based on sViT
 
LIU Fu-zhou, YUAN Bo-wen, LYU Tong, LU Bing-wen, ZHOU Jie, WU Da-ming
(State Grid Jiangsu Electric Power Co., Ltd. Yancheng Power Supply Branch, Yancheng 224000, China)
 
    Abstract: In order to solve the problem of difficult location after a single-phase grounding fault in the wind farm collector line, a fault section location method based on the Variational Mode Decomposition-Continuous Wavelet Transform (VMD-CWT) time frequency spectrum combined with siamese Vision Transformer (sViT) is proposed. It is found that the fault section is closely related to the VMD-CWT spectrum of the fault voltage of the collector, the fault section location of the collector line can be realized by mining the relationship between the spectral line and the fault section by using the deep learning algorithm. With the help of PSCAD/EMTDC software to build the collector line model, collect the data of various fault conditions, and generate the time frequency spectrum of VMD-CWT transformation; the optimal recognition parameters of the sViT network will be found on the training set, and the branch of this network will be used for test set recognition.The simulation shows that the method has good adaptability to multi-branch collector lines and mixed short lines, and the positioning is less affected by transition resistance, noise and fault phase angle.
    Key words: siamese vision transformer network; variational mode decomposition-continuous wavelet transform; wind farm collector line;fault section location
 
參考文獻(xiàn)
[1] 孫華東,許濤,郭強(qiáng),等. 英國“8·9”大停電事故分析及對中國電網(wǎng)的啟示[J] . 中國電機(jī)工程學(xué)報(bào),2019,39(21) :6183-6191.
[2] 齊鄭,黃朝暉,陳艷波. 基于零序分量的阻抗法配電網(wǎng)故障定位技術(shù)[J] . 電力系統(tǒng)保護(hù)與控制,2023,51(6) :54-62.
[3] 王玲,鄧志,馬明,等. 基于改進(jìn)視在阻抗的配電網(wǎng)故障定位方法及其應(yīng)用[J] . 廣東電力,2020,33(10) :84-93.
[4] 鄧豐,李欣然,曾祥君,等. 基于多端故障行波時(shí)差的含分布式電源配電網(wǎng)故障定位新方法[J] . 中國電機(jī)工程學(xué)報(bào),2018,38(15) :11-22.
[5] 王煒,王全金,尹力,等. 基于零模行波波速量化的高壓輸電線路雙端故障定位方法[J] . 電力自動化設(shè)備,2022,42(12) :165-170.
[6] 陶彩霞,杜雪,高鋒陽,等. 基于經(jīng)驗(yàn)小波變換的混合輸電線路單相接地故障測距[J] . 電力系統(tǒng)保護(hù)與控制,2021,49(10) :105-112.
[7] 夏翊翔,李澤文,雷柳,等. 基于動態(tài)虛擬故障的行波網(wǎng)絡(luò)定位新方法[J] . 中國電機(jī)工程學(xué)報(bào),2021,41(14) :4868-4878.
[8] 楊紅,尹項(xiàng)根,陳衛(wèi),等. 基于分相電流突變量相位比較的廣域繼電保護(hù)[J] . 電力系統(tǒng)保護(hù)與控制,2012,40(23) :1-6.
[9] 薛永端,徐丙垠,李天友,等. 配網(wǎng)自動化系統(tǒng)小電流接地故障暫態(tài)定位技術(shù)[J] . 電力自動化設(shè)備,2013,33(12) :27-32.
[10] 張鑫,牟龍華. 基于故障暫態(tài)電流主頻分量的礦山電網(wǎng)暫態(tài)保護(hù)[J] . 電力自動化設(shè)備,2013,33(7) :75-80.
[11] 朱永利,丁嘉,潘新朋. 基于零序分量的風(fēng)電場集電線不對稱接地故障定位[J] . 電力系統(tǒng)保護(hù)與控制,2023,51(3) :56-67.
[12] 彭華,朱永利. 基于 apFFT 頻譜校正和 XGBoost 的風(fēng)電場集電線路單相接地故障測距[J] . 電工技術(shù)學(xué)報(bào),2020,35(23) :4931-4939.
[13] 李永麗,辛雙喬,李濤,等. 基于多端信息的風(fēng)電場集電線路單相接地故障定位算法[J] . 電力工程技術(shù),2022,41(5) :2-11.
[14] MIRZAEI M, VAHIDI B, HOSSEINIAN S H.Accurate fault location and faulted section determination based on deep learning for a parallelcompensated three-terminal transmission line[J].IET Generation, Transmission & Distribution,2019,13(13) :2770-2778.
[15] 侯思祖,郭威,王子奇,等. 基于小波 AlexNet 網(wǎng)絡(luò)的配電網(wǎng)故障區(qū)段定位方法[J] . 電測與儀表,2022,59(3) :46-57.
[16] 張翼,劉富州,朱永利,等. 廣域行波信息與圖注意力網(wǎng)絡(luò)相結(jié)合的輸電網(wǎng)故障定位[J] . 儀器儀表學(xué)報(bào),2022,43(6) :140-150.
[17] LUO Guomin, YAO Changyuan, LIU Yinglin, et al.Stacked auto-encoder based fault location in VSC-HVDC[J].IEEE Access,2018,6 :33216-33224.
[18] 中國電力企業(yè)聯(lián)合會. 風(fēng)力發(fā)電場設(shè)計(jì)規(guī)范:GB 51096—2015[S]. 北京:中國計(jì)劃出版社,2015 :32-36.
[19] 國家電力監(jiān)管委員會. 風(fēng)電場接入電力系統(tǒng)技術(shù)規(guī)定:GB/T 19963—2011[S]. 北京:中國計(jì)劃出版社,2011 :1-8.
[20] 田永林,王雨桐,王建功,等. 視覺 Transformer 研究的關(guān)鍵問題:現(xiàn)狀及展望[J] . 自動化學(xué)報(bào),2022,48(4) :957-979.
[21] LAN S, CHEN M J, CHEN D Y.A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network[J].IEEE Transactions on Power Delivery,2019,34(3) :848-857.