Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于改進(jìn)天鷹優(yōu)化算法的微電網(wǎng)多目標(biāo)優(yōu)化調(diào)度研究

來源:電工電氣發(fā)布時(shí)間:2023-12-28 13:28 瀏覽次數(shù):218

基于改進(jìn)天鷹優(yōu)化算法的微電網(wǎng)多目標(biāo)優(yōu)化調(diào)度研究

宗壽松1,萬(wàn)俊杰2
(1 江蘇安科瑞微電網(wǎng)研究院有限公司,江蘇 江陰 214432;
2 安科瑞電氣股份有限公司,上海 201801)
 
    摘 要:微電網(wǎng)優(yōu)化調(diào)度對(duì)降低企業(yè)用電費(fèi)用,減少能源損耗和環(huán)境污染具有重要意義。研究了覆蓋光伏、風(fēng)電、儲(chǔ)能、燃?xì)廨啓C(jī)和柴油發(fā)電機(jī)的分布式電源,在微電網(wǎng)并網(wǎng)運(yùn)行的情況下,為協(xié)調(diào)系統(tǒng)內(nèi)部各微電源的出力情況,對(duì)光伏發(fā)電、風(fēng)力發(fā)電和用電負(fù)荷功率進(jìn)行預(yù)測(cè),建立了以運(yùn)行成本和污染治理費(fèi)用最低的目標(biāo)函數(shù),并采用改進(jìn)天鷹優(yōu)化算法 (IAO) 進(jìn)行求解,求得不同分布式電源和大電網(wǎng)的出力情況。仿真結(jié)果表明,該模型在保證用戶持續(xù)供電的情況下,可以在一定程度上有效降低企業(yè)用戶的用電成本以及減少污染物的排放,為微電網(wǎng)實(shí)際運(yùn)行的功率分配提供指導(dǎo)。
    關(guān)鍵詞: 微電網(wǎng);多目標(biāo);改進(jìn)天鷹優(yōu)化算法;優(yōu)化調(diào)度
    中圖分類號(hào):TM711 ;TM73     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)12-0015-08
 
Research on Multi-Objective Optimal Dispatch of Microgrid with
Improved Aquila Optimizer Algorithm
 
ZONG Shou-song1, WAN Jun-jie2
(1 Jiangsu Acrel Microgrid Research Institute Co., Ltd, Jiangyin 214432, China;
2 Acrel Electric Co., Ltd, Shanghai 201801, China)
 
    Abstract: The optimal dispatch of microgrid is an indispensable part of smart grid optimization, which is of great significance to reduce electricity costs of enterprises, energy consumption and environmental pollution. In this paper, the distributed power supply covering photovoltaic,wind power, energy storage, gas turbine and diesel generator is studied. In the case of grid-connected operation of microgrid, in order to coordinate the output of various micro power sources in the system, the photovoltaic power generation, wind power generation and electricity load power are predicted, and the objective function with the lowest operating cost and pollution control cost is established. The Improved Aquila Optimizer (IAO) algorithm is used to solve the problem to obtain the output of different distributed generators and large power grids. The simulation results show that the model can effectively reduce the electricity cost and pollutant emission of enterprise users to a certain extent under the condition of ensuring continuous power supply for users, and provide guidance for the power allocation of microgrid in actual operation.
    Key words: microgrid; multi-objective; improved aquila optimizer algorithm; optimal dispatch
 
參考文獻(xiàn)
[1] 張軍六, 樊偉, 譚忠富, 等. 計(jì)及需求響應(yīng)的氣電互聯(lián)虛擬電廠多目標(biāo)調(diào)度優(yōu)化模型[J] . 電力建設(shè),2020, 41(2) :1-10.
[2] HOU Hui, XUE Mengya, XU Yan, et al.Multiobjective economic dispatch of a microgrid considering electric vehicle and transferable load[J].Applied Energy, 2020, 262(6) :114489.
[3] 趙珍珍, 王維慶, 樊小朝, 等. 基于 NSGA-Ⅱ-PSO 算法的微電網(wǎng)多目標(biāo)優(yōu)化運(yùn)行模式[J] . 電源學(xué)報(bào),2023, 21(1) :118-125.
[4] 黃淑媛, 肖健梅. 基于差分進(jìn)化算法的微電網(wǎng)多目標(biāo)優(yōu)化調(diào)度[J]. 船電技術(shù), 2018, 38(7) :57-61.
[5] ABUALIGAH L, YOUSRI D, ABD E M, et al.Aquila Optimizer:A Novel Meta-Heuristic Optimization Algorithm [J] . Computers & Industrial Engineering, 2021, 157 :107250.
[6] 王子龍, 于東立, 門向陽(yáng), 等. 含壓縮空氣儲(chǔ)能的能源互聯(lián)微網(wǎng)型系統(tǒng)優(yōu)化配置[J] . 電力需求側(cè)管理, 2018, 20(6) :40-45.
[7] LACAL-ARANTEGUI R.Materials use in electricity generators in wind turbines-state-of-theart and future specifications[J].Journal of Cleaner Production, 2015,87(1) :275-283.
[8] 李國(guó)慶, 翟曉娟, 李揚(yáng), 等. 基于改進(jìn)蟻群算法的微電網(wǎng)多目標(biāo)模糊優(yōu)化運(yùn)行[J] . 太陽(yáng)能學(xué)報(bào),2018, 39(8) :2310-2317.
[9] 甘陽(yáng). 考慮需求響應(yīng)的獨(dú)立微電網(wǎng)多目標(biāo)優(yōu)化配置研究[D]. 鄭州:鄭州大學(xué), 2018.
[10] 張娜, 趙澤丹, 包曉安, 等. 基于改進(jìn)的 Tent 混沌萬(wàn)有引力搜索算法[J] . 控制與決策, 2020,35(4) :893-900.
[11] 黃臻, 吳峻. 基于學(xué)生 t 分布的變分貝葉斯 UKF 算法在無人船對(duì)準(zhǔn)中的應(yīng)用[J] . 傳感技術(shù)學(xué)報(bào),2022, 35(10) :1340-1347.