Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于改進NSGA-Ⅲ的微電網(wǎng)儲能多目標優(yōu)化配置

來源:電工電氣發(fā)布時間:2024-04-07 13:07 瀏覽次數(shù):449

基于改進NSGA-Ⅲ的微電網(wǎng)儲能多目標優(yōu)化配置

亞夏爾·吐爾洪1,王小云1,常清2,亢朋朋3,鄭云平1,李明1
(1 國網(wǎng)新疆電力有限公司電力科學研究院,新疆 烏魯木齊 830013;
2 國網(wǎng)烏魯木齊供電公司,新疆 烏魯木齊 830054;
3 國網(wǎng)新疆電力有限公司電力調(diào)度控制中心,新疆 烏魯木齊 830063)
 
    摘 要:為提升微電網(wǎng)中儲能配置的可靠性與經(jīng)濟性,提出一種基于改進NSGA-Ⅲ算法的微電網(wǎng)儲能系統(tǒng)容量多目標優(yōu)化配置方法。構建了微電網(wǎng)儲能容量配置雙層優(yōu)化模型,外層以儲能一次投資成本最小為優(yōu)化目標,內(nèi)層以微電網(wǎng)綜合運行成本最小、負荷缺電率最小和可再生能源利用率最大為優(yōu)化目標;在傳統(tǒng)NSGA-Ⅲ算法中嵌入 Levy 理論和一個區(qū)域角度量化機制,使其更加適用于所提直流微電網(wǎng)儲能容量雙層優(yōu)化配置模型的尋優(yōu)迭代求解,并結合典型日數(shù)據(jù),仿真驗證了所提模型及算法的有效性。
    關鍵詞: 微電網(wǎng);儲能系統(tǒng);改進非支配排序遺傳算法;多目標優(yōu)化;優(yōu)化配置
    中圖分類號:TM744     文獻標識碼:A     文章編號:1007-3175(2024)03-0021-08
 
Multi-Objective Optimal Allocation of Energy Storage System in
Microgrids Based on Improved NSGA-Ⅲ
 
YAXAR•Turgun1, WANG Xiao-yun1, CHANG Qing2, KANG Peng-peng3, ZHENG Yun-ping1, LI Ming1
(1 Electric Power Research Institute of State Grid Xinjiang Electric Power Co., Ltd, Urumqi 830013, China;
2 State Grid Wulumuqi Electric Power Supply Company, Urumqi 830054, China;
3 Scheduling Control Center of State Grid Xinjiang Electric Power Co., Ltd, Urumqi 830063, China)
 
    Abstract: In order to improve the reliability and economy of energy storage configuration in microgrids, a multi-objective optimal allocation method for the capacity of microgrid energy storage system based on the improved NSGA-III algorithm is proposed. Firstly, a two-layer optimization model of microgrid energy storage capacity configuration is constructed, with the outer layer taking the minimum primary investment cost of energy storage as the optimization objective, and the inner layer taking the minimum comprehensive operation cost, the minimum load shortage rate and and the maximum renewable energy utilization rate of the microgrid as the optimization goals. Secondly, the traditional NSGA-III algorithm embeds Levy theory and a regional angle quantization mechanism to make it more suitable for the optimization and iterative solution of the proposed two-layer optimal allocation model of DC microgrid energy storage capacity. Finally, the effectiveness of the proposed model and algorithm is verified by simulation with typical daily data.
    Key words: microgrid; energy storage system; improved nondominated sorting genetic algorithm; multi-objective optimization; optimization allocation
 
參考文獻
[1] 徐箏,孫宏斌,郭慶來. 綜合需求響應研究綜述及展望[J] . 中國電機工程學報,2018,38(24) :7194-7205.
[2] 黃雨涵,丁濤,李雨婷,等. 碳中和背景下能源低碳化技術綜述及對新型電力系統(tǒng)發(fā)展的啟示[J]. 中國電機工程學報,2021,41(z1) :28-51.
[3] 董旭柱,華祝虎,尚磊,等. 新型配電系統(tǒng)形態(tài)特征與技術展望[J] . 高電壓技術,2021,47(9) :3021-3035.
[4] 謝鵬,蔡澤祥,劉平,等. 考慮多時間尺度不確定性耦合影響的風光儲微電網(wǎng)系統(tǒng)儲能容量協(xié)同優(yōu)化[J] .中國電機工程學報,2019,39(24) :7126-7136.
[5] 陸燕娟,潘庭龍,楊朝輝. 計及電動汽車的社區(qū)微網(wǎng)儲能容量配置[J]. 太陽能學報,2021,42(12) :362-367.
[6] 李奇,趙淑丹,蒲雨辰,等. 考慮電氫耦合的混合儲能微電網(wǎng)容量配置優(yōu)化[J] . 電工技術學報,2021,36(3) :486-495.
[7] 許傳博,趙云灝,王曉晨,等. 碳中和愿景下考慮電氫耦合的風光場站氫儲能優(yōu)化配置[J] . 電力建設,2022,43(1) :10-18.
[8] 陳景文,肖妍,莫瑞瑞,等. 考慮光伏校正的微電網(wǎng)儲能容量優(yōu)化配置[J] . 電力系統(tǒng)保護與控制,2021,49(10) :59-66.
[9] 丁偉,蘇新凱,廖圣瑄,等. 基于哈里斯鷹優(yōu)化算法的光伏儲能容量配置優(yōu)化[J] . 電子設計工程,2024,32(1) :96-101.
[10] 陳澤西,孫玉樹,張妍,等. 考慮風光互補的儲能優(yōu)化配置研究[J]. 電工技術學報,2021,36(z1) :145-153.
[11] 趙冬梅,夏軒,陶然. 含電轉氣的熱電聯(lián)產(chǎn)微網(wǎng)電/熱綜合儲能優(yōu)化配置[J] . 電力系統(tǒng)自動化,2019,43(17) :46-54.
[12] 江岳春,曾誠玉,郇嘉嘉,等. 基于改進NSGA-Ⅱ的綜合能源多主體利益均衡優(yōu)化調(diào)度[J]. 電力自動化設備,2020,40(7) :17-25.
[13] 李濤,許苑,陳健,等. 計及全壽命成本和收益的微電網(wǎng)儲能優(yōu)化配置[J] . 電力系統(tǒng)及其自動化學報,2020,32(3) :46-51.
[14] 周京華,翁志鵬,宋曉通. 兼顧可靠性與經(jīng)濟性的孤島型光儲微電網(wǎng)容量配置方法[J] . 電力系統(tǒng)自動化,2021,45(8) :166-174.
[15] 黃偉,葉波. 綜合能源系統(tǒng)環(huán)境下電動汽車分群優(yōu)化調(diào)度[J]. 電力建設,2021,42(4) :27-39.
[16] RASHIDAEE S A, AMRAEE T, FOTUHI-FIRUZABAD M.A Linear Model for Dynamic Generation Expansion Planning Considering Loss of Load Probability[J].IEEE Transactions on Power Systems,2018,33(6) :6924-6934.
[17] 韓銳,吳軍,廖清芬,等. 基于NSGA-Ⅲ算法的光-水-火電機組 AGC 協(xié)調(diào)優(yōu)化策略[J]. 智慧電力,2022,50(1) :45-52.
[18] LU Yao, SUN You, LIU Xiaodong, et al.Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight[J].Journal of Systems Engineering and Electronics,2020,31(4) :826-840.
[19] ZHENG J H, WU C Q, HUANG J, et al.Multi-Objective Optimization for Coordinated Day-Ahead Scheduling Problem of Integrated Electricity-Natural Gas System with Microgrid[J].IEEE Access,2020,8 :86788-86796.
[20] DEB K, JAIN H.An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:Solving Problems with Box Constraints[J].IEEE Transactions on Evolutionary Computation,2014,18(4) :577-601.
[21] AI Y, DU M, PAN Z, et al.The optimization of reactive power for distribution network with PV generation based on NSGA-Ⅲ [J] .CPSS Transactions on Power Electronics and Applications,2021,6(3) :193-200.
[22] KAJIYAMA Shinya, IGARASHI Yutaka, YAZAKI Toru,et al.T/R Switch Composed of Three HV-MOSFETs with 12.1-μW Consumption That Enables Per-Channel Self-Loopback AC Tests and 18.1-dB Switching Noise Suppression for 3-D Ultrasound Imaging with 3072-Ch Transceiver [J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2022,30(2) :153-165.