Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

改進(jìn)Q-Learning輸電線路超聲驅(qū)鳥設(shè)備參數(shù)優(yōu)化研究

來源:電工電氣發(fā)布時(shí)間:2024-06-03 13:03 瀏覽次數(shù):398

改進(jìn)Q-Learning輸電線路超聲驅(qū)鳥設(shè)備參數(shù)優(yōu)化研究

徐浩,房旭,張浩,王愛軍,周洪益,宋鈺
(國網(wǎng)江蘇省電力有限公司鹽城供電分公司,江蘇 鹽城 224000)
 
    摘 要:超聲波驅(qū)鳥是一種解決輸電設(shè)備鳥害的重要手段,但現(xiàn)場使用超聲波驅(qū)鳥器工作模式較單一,易產(chǎn)生鳥類適應(yīng)問題。提出了一種改進(jìn) Q-Learning 輸電線路超聲驅(qū)鳥設(shè)備參數(shù)優(yōu)化方法,針對涉鳥故障歷史數(shù)據(jù)量少以及鳥類的適應(yīng)性問題,將強(qiáng)化學(xué)習(xí)算法應(yīng)用于輸電線路超聲驅(qū)鳥設(shè)備參數(shù)優(yōu)化;針對傳統(tǒng)強(qiáng)化學(xué)習(xí)算法在設(shè)備終端應(yīng)用中存在收斂慢、耗時(shí)長的缺點(diǎn),提出一種基于動態(tài)學(xué)習(xí)率的改進(jìn) Q-Learning 算法,對不同頻段超聲波的權(quán)重進(jìn)行自適應(yīng)優(yōu)化。實(shí)驗(yàn)結(jié)果顯示,改進(jìn) Q-Learning 算法最優(yōu)參數(shù)的迭代收斂速度大幅提高,優(yōu)化后驅(qū)鳥設(shè)備的驅(qū)鳥成功率達(dá)到了76%,優(yōu)于傳統(tǒng)強(qiáng)化學(xué)習(xí)算法模式,較好地解決了鳥類適應(yīng)性問題。
    關(guān)鍵詞: 改進(jìn)Q-Learning ;超聲波驅(qū)鳥;參數(shù)優(yōu)化;適應(yīng)性
    中圖分類號:TM726 ;P631.5     文獻(xiàn)標(biāo)識碼:B     文章編號:1007-3175(2024)05-0053-05
 
Research on Parameter Optimization of Improved Q-Learning Ultrasonic
Bird Repellent Equipment for Transmission Lines
 
XU Hao, FANG Xu, ZHANG Hao, WANG Ai-jun, ZHOU Hong-yi, SONG Yu
(Yancheng Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd, Yancheng 224000, China)
 
    Abstract: Ultrasonic bird repellent is an important method to solve the problem of bird damage in power transmission equipment, but the sole mode of operation that ultrasonic bird repellent was used in the field caused problems of the adaptability of birds. This paper presented an improved parameter optimization method for ultrasonic bird repellent equipment of Q-Learning transmission line, and the reinforcement learning algorithm is applied to the parameter optimization of ultrasonic bird drive equipment of transmission lines in order to solve the problem of little historical data of birds-related faults and the adaptability of birds. In view of the shortcomings of traditional reinforcement learning algorithms in device terminal applications, which have slow convergence and long time-consuming, an improved Q-Learning algorithm based on dynamic learning rate was proposed, which adaptively optimized the weights of ultrasound in different frequency bands. The experimental results showed that the iterative convergence speed of the optimal parameters of the improved Q-Learning algorithm was greatly improved, and the success rate of bird repellent equipment after optimization was 76%, which is better than the traditional reinforcement learning algorithm mode, and can better solve the adaptability problem of birds.
    Key words: improved Q-Learning; ultrasonic bird repellent; parameter optimization; adaptability
 
參考文獻(xiàn)
[1] 李帆,李陽林,張宇,等. 架空輸電線路涉鳥故障分析與防范[J]. 中國電力,2019,52(10) :92-99.
[2] 李陽林,張宇,郭志鋒,等. 架空輸電線路涉鳥故障防治[M]. 北京:中國電力出版社,2018.
[3] 唐子峰,袁翔,廖志雄,等. 廣東韶關(guān)電網(wǎng)鳥害跳閘故障統(tǒng)計(jì)分析及防護(hù)[J]. 電瓷避雷器,2018(2) :20-24.
[4] 中國電力企業(yè)聯(lián)合會. 架空輸電線路涉鳥故障防治技術(shù)導(dǎo)則:GB/T 35695—2017[S] . 中國標(biāo)準(zhǔn)出版社,2017 :15-29.
[5] 盛從兵, 趙慶喜, 李輝杰, 等. 基于鳥類生物特性的智能型聲波驅(qū)鳥裝置研究[J] . 電源技術(shù)應(yīng)用,2013(12) :382.
[6] 聶興成,張榮浩,王愛玉,等. 桿塔智能超聲波驅(qū)鳥系統(tǒng)設(shè)計(jì)[J]. 電工電氣,2015(10) :21-23.
[7] 余鵬,田杰,陳碩. 變電站電子爆鳴驅(qū)鳥系統(tǒng)設(shè)計(jì)[J].電子設(shè)計(jì)工程,2017,25(24) :134-137.
[8] 王彥. 基于超聲參量陣的變電站驅(qū)鳥系統(tǒng)設(shè)計(jì)與算法研究[D]. 青島:山東科技大學(xué),2019.
[9] 湯瀚博,蔣旭,李海波,等. 基于物聯(lián)網(wǎng)技術(shù)的輸電線路智慧驅(qū)鳥系統(tǒng)設(shè)計(jì)[J] . 現(xiàn)代電子技術(shù),2023,46(21) :154-159.
[10] 李睿. 多模式超聲波驅(qū)鳥器的研制[J] . 電工電氣,2021(3) :35-40.