Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

仿生流場質(zhì)子交換膜燃料電池特性研究

來源:電工電氣發(fā)布時間:2024-06-03 14:03 瀏覽次數(shù):366

仿生流場質(zhì)子交換膜燃料電池特性研究

王旭,楊俠,吳艷陽,張剛,羅燕
(武漢工程大學 機電工程學院,湖北 武漢 430205)
 
    摘 要:為了研究不同流場結(jié)構(gòu)對質(zhì)子交換膜燃料電池 (PEMFC) 性能的影響,基于人類肺部毛細結(jié)構(gòu)改進設(shè)計了一種新型仿生流場。利用計算流體力學軟件 Fluent 分別對仿生流場、平行流場、單蛇形流場的 PEMFC 進行數(shù)值模擬,對比了三種 PEMFC 的極化曲線、壓降、氣體濃度分布以及電流密度分布,并探究了陰陽極相對加濕度對新型仿生流場 PEMFC 性能的影響。結(jié)果表明:仿生流場內(nèi)氫氣、氧氣、水分布最均勻,陰極流道壓降值最小,陰極催化層上電流密度最大;高電壓下,電流密度隨著陰陽極濕度增大而增大,電池性能隨之提升,并且陽極氣體加濕度對電池性能的影響比陰極氣體加濕度對電池性能的影響大;低電壓下,電流密度隨著陰陽極濕度增大而減小,電池性能隨之降低,并且陰極氣體加濕度對電池性能的影響比陽極氣體加濕度對電池性能的影響大。
    關(guān)鍵詞: 質(zhì)子交換膜燃料電池;數(shù)值模擬;陰陽極相對加濕度;流場結(jié)構(gòu)
    中圖分類號:TM911.4     文獻標識碼:A     文章編號:1007-3175(2024)05-0034-07
 
Research on Characterization of Proton Exchange Membrane
Fuel Cell with Bionic Flow Field
 
WANG Xu, YANG Xia, WU Yan-yang, ZHANG Gang, LUO Yan
(School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China)
 
    Abstract: In order to investigate the effect of different flow field structures on the performance of proton exchange membrane fuel cell(PEMFC), a novel bionic flow field based on the improved capillary structure of human lungs was designed. In this paper, computational fluid dynamics software Fluent was used to carry out numerical simulation for the PEMFC in bionic flow field, parallel flow field, and single snake flow field respectively. The polarization curves, the pressure drop, the distribution of gas concentration and the distribution of the current density of three PEMFCs were compared, and the effects of relative humidity of cathode and anode on the performance of novel bionic flow field PEMFC were explored. The results showed that the distribution of hydrogen, oxygen and water in the bionic flow field is most uniform,the pressure drop value of the cathode channel is smallest, and the current density on the cathode catalytic layer is largest. At high voltage,with the increasing of cathode and anode humidity, the current density increases, resulting in improved cell performance, and the effect of anode gas humidity on cell performance is greater than that of cathode gas humidity. At low voltage, with the increasing of cathode and anode humidity, the current density decreases, resulting in decreased cell performance, and the effect of cathode gas humidity on cell performance is greater than that of anode gas humidity.
    Key words: proton exchange membrane fuel cell; numerical simulation; relative humidity of cathode and anode; flow field structure
 
參考文獻
[1] 衣寶廉. 燃料電池——原理·技術(shù)·應用[M] . 北京:化工工業(yè)出版社,2003.
[2] JO J H, KIM W T.Numerical simulation of water droplet dynamics in a right angle gas channel of a polymer electrolyte membrane fuel cell[J].International Journal of Hydrogen Energy,2015,40(26) :8368-8383.
[3] HU Hao, XU Xiaoming, MEI Nan, et al.Numerical study on the performance of fuel cell with wavy flow field plate[J].Ionics,2020,26(12) :1-9.
[4] CHEN Xi, CHEN Yao, LIU Qian, et al.Performance study on a stepped flow field design for bipolar plate in PEMFC[J].Energy Reports,2021,7(35) :336-347.
[5] 張貝貝,李陪超. 流道結(jié)構(gòu)對質(zhì)子交換膜燃料電池的影響[J]. 農(nóng)業(yè)裝備與車輛工程,2021,59(10) :21-26.
[6] 陳磊,郭朋彥,張瑞珠,等. 質(zhì)子交換膜燃料電池流道尺寸對電池性能的影響[J] . 河南科技,2018(1) :141-142.
[7] 汪龍飛,楊俠,嚴智遠,等. 流場結(jié)構(gòu)對氫燃料電池性能的影響[J] . 武漢工程大學學報,2022,44(4) :445-449.
[8] 樊文選. 基于玉米葉脈結(jié)構(gòu)的 PEMFC 雙極板主流場水管理研究[D]. 吉林:吉林大學,2021.
[9] KAHRAMAN H, ORHAN M F.Flow field bipolar plates in a proton exchange membrane fuel cell:Analysis & modeling[J].Energy Conversionoe Management,2017,133 :363-384.
[10] 高鵬然. 氫燃料電池應用進展研究[J] . 石化技術(shù),2020,27(6) :115-116.
[11] IONESCU V.Simulating the effect of gas channel geometry on PEM fuel cell performance by finite element method[J].Procedia Technology,2016,22 :713-719.
[12] 劉康杰,陳濤,劉士華,等. 進氣方式對陽極閉端 PEMFC 溫度分布及性能影響[J] . 電源技術(shù),2020,44(12) :1755-1758.
[13] BOYD B,HOOMAN K.Air-cooled micro-porous heat exchangers for thermal management of fuel cells[J].International Communications in Heat & Mass Transfer,2012,39(3) :363-367.