Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò)PID的永磁同步電機(jī)控制研究

來源:電工電氣發(fā)布時(shí)間:2024-12-02 10:02 瀏覽次數(shù):64

基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò)PID的永磁同步電機(jī)控制研究

王雷,王育安,崔玉鑫,眭曉倩,王毅
(河北科技大學(xué) 電氣工程學(xué)院,河北 石家莊 050018)
 
    摘 要:針對(duì)傳統(tǒng) PID 控制在永磁同步電機(jī)控制系統(tǒng)中未能實(shí)現(xiàn)精準(zhǔn)控制的問題,提出了一種基于改進(jìn)蜣螂優(yōu)化算法的 BP 神經(jīng)網(wǎng)絡(luò) PID 控制器,該控制器由 BP 神經(jīng)網(wǎng)絡(luò)通過自適應(yīng)方法來調(diào)整權(quán)重系數(shù),解決了 PID 無法在線調(diào)節(jié)參數(shù)的缺點(diǎn)。針對(duì) BP 神經(jīng)網(wǎng)絡(luò)在進(jìn)行反向傳播時(shí)陷入局部最優(yōu)的概率較大,引入蜣螂優(yōu)化算法通過適應(yīng)度值不斷更新 BP 神經(jīng)網(wǎng)絡(luò)核心參數(shù),從而提高 BP 神經(jīng)網(wǎng)絡(luò)的優(yōu)化速率。對(duì)于蜣螂優(yōu)化算法中存在初始種群質(zhì)量不高及搜索能力不足等問題,對(duì)蜣螂優(yōu)化算法進(jìn)行混合策略優(yōu)化,大大提升了蜣螂優(yōu)化算法求解效率和精度。實(shí)驗(yàn)結(jié)果表明該改進(jìn)蜣螂優(yōu)化算法可以有效地提高控制系統(tǒng)的響應(yīng)速度,減小超調(diào)量,在轉(zhuǎn)速和負(fù)載突變的情況下都有較強(qiáng)的魯棒性。
    關(guān)鍵詞: 永磁同步電機(jī);改進(jìn)蜣螂優(yōu)化算法;BP 神經(jīng)網(wǎng)絡(luò);PID 控制
    中圖分類號(hào):TM315     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2024)11-0030-07
 
Research on Control of Permanent Magnet Synchronous Motor Based on
PID of Optimized BP Neural Network
 
WANG Lei, WANG Yu-an, CUI Yu-xin, SUI Xiao-qian, WANG Yi
(College of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)
 
    Abstract: In view of the problem that traditional PID control fails to achieve accurate control in the permanent magnet synchronous motor control system, a PID controller of BP neural network based on improved dung beetle optimization algorithm is proposed. The controller uses BP neural network to adjust the weight coefficient by adaptive method, which solves the shortcoming that PID can not adjust parameters online.Then, aiming at the high probability of BP neural network falling into local optimum when performing back propagation, the improved dung beetle optimization algorithm is introduced to continuously update the core parameters of the BP neural network through the adaptive value, so as to improve the optimization rate of the BP neural network. Furthermore, addressing issues like low initial population quality and inadequate search capability in the improved dung beetle optimization algorithm, a hybrid strategy is implemented to optimize the improved dung beetle optimization algorithm, which greatly improves the solving efficiency and accuracy of the improved dung beetle optimization algorithm. Experimental results demonstrate that the improved dung beetle optimization algorithm effectively enhances the response speed of the control system, reduces overshoot, and it has strong robustness to the case of speed and load sudden change.
    Key words: permanent magnet synchronous motor; improved dung beetle optimization algorithm; BP neural network; PID control
 
參考文獻(xiàn)
[1] 李政,胡廣大,崔家瑞,等. 永磁同步電機(jī)調(diào)速系統(tǒng)的積分型滑模變結(jié)構(gòu)控制[J] . 中國電機(jī)工程學(xué)報(bào),2014,34(3) :431-437.
[2] 劉景林,公超,韓澤秀,等. 永磁同步電機(jī)閉環(huán)控制系統(tǒng)數(shù)字 PI 參數(shù)整定[J] . 電機(jī)與控制學(xué)報(bào),2018,22(4) :26-32.
[3] 王松. 永磁同步電機(jī)的參數(shù)辨識(shí)及控制策略研究[D] .北京:北京交通大學(xué),2011.
[4] 周佳,盧少武,周鳳星. 基于 RBF 神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)速度 PI-IP 控制[J]. 組合機(jī)床與自動(dòng)化加工技術(shù),2017(1) :116-118.
[5] XUE Jiankai, SHEN Bo.Dung beetle optimizer:A new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2023,79(7) :7305-7336.
[6] 趙強(qiáng),王昊潔,謝春麗. 基于改進(jìn)蜣螂優(yōu)化算法的永磁同步電機(jī)參數(shù)辨識(shí)[J]. 重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版), 2024,43(6) :102-108.
[7] 邵明玲. 永磁同步電機(jī)的神經(jīng)網(wǎng)絡(luò)模糊自適應(yīng)控制[D].青島:青島大學(xué),2016.
[8] HARNEFORS L, PIETILAINEN K, GERTMAR L.Torquemaximizing field-weakening control:Design,analysis,and parameter selection[J].IEEE Transactions on Industrial Electronics,2001,48(1) :161-168.
[9] 王同旭,馬鴻雁,聶沐晗. 電梯用永磁同步電機(jī) BP 神經(jīng)網(wǎng)絡(luò) PID 調(diào)速控制方法的研究[J] . 電工技術(shù)學(xué)報(bào),2015,30(S1) :43-47.
[10] 葉德住. 基于 BP 神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)控制[J] .微電機(jī),2016,49(11) :57-61.
[11] 郭琴,鄭巧仙. 多策略改進(jìn)的蜣螂優(yōu)化算法及其應(yīng)用[J].計(jì)算機(jī)科學(xué)與探索,2024,18(4) :930-946.
[12] TIZHOOSH H R.Opposition-based learning:A new schemefor machine intelligence[C]//International Conference on Computational Intelligence for Modelling , Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce,2005.
[13] WANG Xingyuan, JIN Canqi.Image encryption using game of life permutation and PWLCM chaotic system[J].Optics Communications,2012,285(4) :412-417.
[14] 郭振洲,王平,馬云峰,等. 基于自適應(yīng)權(quán)重和柯西變異的鯨魚優(yōu)化算法[J] . 微電子學(xué)與計(jì)算機(jī),2017,34(9) :20-25.
[15] 李飛,陳勇弟,魏小城,等. 基于改進(jìn)麻雀搜索算法的微電網(wǎng)優(yōu)化調(diào)度[J] . 智能計(jì)算機(jī)與應(yīng)用,2024,14(5) : 150-156.
[16] 付接遞,李振東,郭輝. 基于教與學(xué)和逐維柯西變異的鯨魚優(yōu)化算法[J] . 計(jì)算機(jī)工程與科學(xué),2023,45(5) :940-950.
[17] 付華,劉昊. 多策略融合的改進(jìn)麻雀搜索算法及其應(yīng)用[J]. 控制與決策,2022,37(1) :87-96.