參考文獻
[1] 高志遠(yuǎn),張晶,莊衛(wèi)金,等. 關(guān)于新型電力系統(tǒng)部分特點的思考[J]. 電力自動化設(shè)備,2023,43(6) :137-143.
[2] 杜曉東,趙建利,劉科研,等. 基于數(shù)字孿生的光伏高比例配電網(wǎng)過載風(fēng)險預(yù)警方法[J]. 電力系統(tǒng)保護與控制,2022,50(9) :136-144.
[3] HOKE A, BUTLER R, HAMBRICK J, et al.Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders[J].IEEE Transactions on Sustainable Energy,2013,4(2) :350-357.
[4] AYRES H M, FREITAS W, DE ALMEIDA M C, et al.Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations[J].IET Generation, Transmission & Distribution,2010,4(4) :495-508.
[5] AL-SAADI H , ZIVANOVIC R , AL-SARAWI S F.Probabilistic hosting capacity for active distribution networks[J].IEEE Transactions on Industrial Informatics,2017,13(5) :2519-2532.
[6] MOHAMMAD S S A , MA J , ZHANG D , et al .Probabilistic assessment of hosting capacity in radial distribution systems[J].IEEE Transactions on Sustainable Energy,2018,9(4) :1935-1947.
[7] 薛禹勝,賴業(yè)寧. 大能源思維與大數(shù)據(jù)思維的融合:(一) 大數(shù)據(jù)與電力大數(shù)據(jù)[J] . 電力系統(tǒng)自動化,2016,40(1) :1-8.
[8] 黃蔓云,衛(wèi)志農(nóng),孫國強,等. 數(shù)據(jù)挖掘在配電網(wǎng)態(tài)勢感知中的應(yīng)用:模型、算法和挑戰(zhàn)[J]. 中國電機工程學(xué)報,2022,42(18) :6588-6598.
[9] 巨云濤,楊明友,吳文傳. 適用于配電網(wǎng)三相優(yōu)化潮流的數(shù)據(jù)物理融合驅(qū)動線性化方法[J]. 電力系統(tǒng)自動化,2022,46(13) :43-52.
[10] WENG Y, LIAO Y, RAJAGOPAL R.Distributed energy resources topology identification via graphical modeling[J].IEEE Transactions on Power Systems,2017,32(4) :2682-2694.
[11] United States Energy Information Administration.How many smart meters are installed in the United States, and who has them?[EB/OL].(2023-10-20)[2024-10-28].https://www.eia.gov/tools/faqs/faq.php?id=108&t=3.
[12] European Commission.Smart Metering Deployment in the European Union[EB/OL].(2023-10-24)[2024-10-28].http://ses.jrc.ec.europa.eu/smart-meteringdeployment-european-union.
[13] YU J, WENG Y, RAJAGOPAL R.Robust mapping rule estimation for power flow analysis in distribution grids[C]//North American Power Symposium(NAPS),2017.
[14] PERTL M, HEUSSEN K, GEHRKE O, et al.Voltage estimation in active distribution grids using neural networks[C]//IEEE Power and Energy Society General Meeting(PESGM),2016.
[15] MICHAEL P, PHILIP J D, KAI H, et al.Validation of a robust neural real-time voltage estimator for active distribution grids on field data[J].Electric Power Systems Research,2018,154(8):182-192.
[16] IMEN L, DJAMEL L.Power flow variation based on extreme learning machine algorithm in power system[J].International Journal of Power Electronics and Drive Systems,2019,10(3) :1244.
[17] BAGHAEE H R, MIRSALIM M, GHAREHPETIAN G B.Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2016,4(4) :1217-1225.
[18] YANG Y, YANG Z F, YU J, et al.Fast calculation of probabilistic power flow: A model-based deep learning approach[J].IEEE Transactions on Smart Grid,2020,11(3) :2235-2244.
[19] 張?zhí)觳?,王劍曉,李庚銀,等. 面向高比例新能源接入的配電網(wǎng)電壓時空分布感知方法[J]. 電力系統(tǒng)自動化,2021,45(2) :37-45.
[20] 曾亮,雷舒敏,王珊珊,等. 基于 OVMD-SSA-DELM-GM 模型的超短期風(fēng)電功率預(yù)測方法[J] . 電網(wǎng)技術(shù),2021,45(12) :4701-4710.
[21] 楊淑霞,韓奇,徐琳茜,等. 基于魚群算法優(yōu)化 BP 神經(jīng)網(wǎng)絡(luò)的電力客戶滿意度綜合評價方法[J] . 電網(wǎng)技術(shù),2011,35(5) :146-151.
[22] 梁恩豪,孫軍偉,王延峰. 基于自適應(yīng)樽海鞘算法優(yōu)化 BP 的風(fēng)光互補并網(wǎng)發(fā)電功率預(yù)測[J] . 電力系統(tǒng)保護與控制,2021,49(24) :114-120.
[23] 張甲甲,萬定生. 基于混合 GA 優(yōu)化 LSTM 的中小流域流量預(yù)測研究[J]. 計算機仿真,2022,39(2) :283-287.
[24] 薛建凱. 一種新型的群智能優(yōu)化技術(shù)的研究與應(yīng)用[D].上海:東華大學(xué),2020.
[25] 麻秀范. 含分布式電源的配電網(wǎng)規(guī)劃與優(yōu)化運行研究[D].北京:華北電力大學(xué),2013.