Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

源荷不確定性下虛擬電廠兩階段魯棒電算協(xié)同調(diào)度

來(lái)源:電工電氣發(fā)布時(shí)間:2025-06-27 09:27 瀏覽次數(shù):5

源荷不確定性下虛擬電廠兩階段魯棒電算協(xié)同調(diào)度

陳學(xué)增
(新疆龍?jiān)葱履茉从邢薰?,新?烏魯木齊 830008)
 
    摘 要:為了應(yīng)對(duì)算力與電力協(xié)同發(fā)展背景下源荷不確定性對(duì)虛擬電廠(VPP)優(yōu)化調(diào)度的挑戰(zhàn),以及 VPP 運(yùn)營(yíng)商與電動(dòng)汽車(chē)(EV)用戶(hù)的利益沖突問(wèn)題,基于電算協(xié)同優(yōu)化進(jìn)行了 VPP 兩階段魯棒調(diào)度的策略研究。建立考慮源荷不確定性的基數(shù)不確定集,刻畫(huà)新能源出力、電力負(fù)荷及 EV 充放電的不確定性特征;構(gòu)建結(jié)合主從博弈的魯棒優(yōu)化調(diào)度模型,通過(guò)引入 EV 用戶(hù)效用函數(shù)分析用戶(hù)充電偏好,并刻畫(huà) VPP 與 EV 用戶(hù)之間的交互關(guān)系;采用 KKT 條件和強(qiáng)對(duì)偶定理將主從博弈模型轉(zhuǎn)換為混合整數(shù)線(xiàn)性規(guī)劃問(wèn)題,并設(shè)計(jì)列和約束生成(C&CG)算法對(duì)模型進(jìn)行求解;通過(guò)算例驗(yàn)證了所提方法在提高 VPP 運(yùn)行效益、降低不確定性風(fēng)險(xiǎn)以及增強(qiáng) EV 用戶(hù)滿(mǎn)意度方面的有效性,為綠色低碳能源與數(shù)字經(jīng)濟(jì)的融合發(fā)展提供了技術(shù)支撐。
    關(guān)鍵詞: 虛擬電廠;電動(dòng)汽車(chē);源荷不確定性;魯棒優(yōu)化;主從博弈
    中圖分類(lèi)號(hào):TM715 ;TM734     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2025)06-0061-11
 
Two-Stage Robust Computing-Power Collaborative Dispatch of
Virtual Power Plants Under Source-Load Uncertainty
 
CHEN Xue-zeng
(Xinjiang Longyuan New Energy Co., Ltd, Urumqi 830008, China)
 
    Abstract: To address the challenges of source-load uncertainty on virtual power plant (VPP) optimal dispatch under the background of collaborative development between computing power and power systems, as well as the conflict of interest between VPP operators and electric vehicle (EV) users, this paper conducts a study on a two-stage robust dispatch strategy for VPPs based on computing-power collaborative optimization. Firstly,the base uncertainty set considering the source-load uncertainty is established to characterize the uncertainties of new energy output, electric load and EV charging/discharging. Secondly, a robust optimal dispatch model combining the master-slave game is constructed to analyze the charging preference of EV users by introducing the EV user’s utility function and to characterize the interaction relationship between the VPP and the EV users.Thirdly, the master-slave game model is converted into a mixed-integer linear programming problem by using KKT condition and strong dyadic theorem, and the column and constraint generation (C & CG) algorithm is designed to solve the model. Finally, the effectiveness of the proposed method in improving the operational efficiency of VPP, reducing the risk of uncertainty, and enhancing the satisfaction of EV users is verified by the arithmetic example, which provides technical support for the integration of green and low-carbon energy and digital economy.
    Key words: virtual power plant; electric vehicle; source-load uncertainty; robust optimization; master-slave game
 
參考文獻(xiàn)
[1] GAO Hongchao, JIN Tai, FENG Cheng, et al. Review of virtual power plant operations :Resource coordination and multidimensional interaction[J].Applied Energy,2024,357 :122284.
[2] 丁巧宜,王梓耀,潘振寧,等. 面向電量- 調(diào)頻-容量市場(chǎng)的數(shù)據(jù)中心園區(qū)算力及電力資源規(guī)劃[J]. 電力系統(tǒng)自動(dòng)化,2024,48(1) :59-66.
[3] WANG Yong, DOU Wenlei, TONG Yongji, et al.Optimal configuration method of electric vehicle’s participating in load aggregator’s VPP low-carbon economy[J].Energy Reports,2023,9:1093-1100.
[4] 李欣,陳英彰,李涵文,等. 考慮碳交易的電-熱綜合能源系統(tǒng)兩階段魯棒優(yōu)化低碳經(jīng)濟(jì)調(diào)度[J]. 電力建設(shè),2024,45(6) :58-69.
[5] RUAN G, QIU D, SIVARANJANI S, et al.Data-driven energy management of virtual power plants :A review[J].Advances in Applied Energy,2024 :100170.
[6] 田立亭,程林,郭劍波,等. 考慮虛擬電廠對(duì)分布式能源的管理和互動(dòng)機(jī)制研究綜述[J] . 電網(wǎng)技術(shù),2020,44(6) :2097-2108.
[7] CHANG Weiguang, YANG Qiang.Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading[J].Applied Energy,2023,351 :121906.
[8] 李嘉森,王進(jìn),楊蒙,等. 基于隨機(jī)優(yōu)化的虛擬電廠熱電聯(lián)合經(jīng)濟(jì)優(yōu)化調(diào)度[J] . 太陽(yáng)能學(xué)報(bào),2023,44(9) :57-65.
[9] 易明月,童曉陽(yáng). 考慮風(fēng)荷預(yù)測(cè)誤差不確定性的動(dòng)態(tài)經(jīng)濟(jì)調(diào)度[J]. 電網(wǎng)技術(shù),2019,43(11) :4050-4056.
[10] KONG Xiangyu, XIAO Jie, LIU Dehong, et al.Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties[J].Applied Energy,2020,279 :115707.
[11] 周博,呂林,高紅均,等. 多虛擬電廠日前魯棒交易策略研究[J]. 電網(wǎng)技術(shù),2018,42(8) : 2694-2703.
[12] SONG Chunning, JING Xiping.Bidding strategy for virtual power plants with the day-ahead and balancing markets using distributionally robust optimization approach[J].Energy Reports,2023,9:637-644.
[13] YANG Jun, SU Changqi.Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J].Energy,2021,223 :120043.
[14] RAYA-ARMENTA J M, BAZMOHAMMADI N, AVINACERVANTES J G, et al.Energy management system optimization in islanded microgrids:A n overview and future trends[J].Renewable and Sustainable Energy Reviews,2021,149 :111327.
[15] 黃景光,汪譚,林湘寧,等. 面向風(fēng)電消納的區(qū)域綜合能源系統(tǒng)魯棒優(yōu)化調(diào)度[J] . 電測(cè)與儀表,2021,58(12) :110-117.
[16] 胡俊杰,賴(lài)信輝,郭偉,等. 考慮電動(dòng)汽車(chē)靈活性與風(fēng)電消納的區(qū)域電網(wǎng)多時(shí)間尺度調(diào)度[J]. 電力系統(tǒng)自動(dòng)化,2022,46(16) :52-60.
[17] 劉方,徐耀杰,楊秀,等. 考慮電能交互共享的虛擬電廠集群多時(shí)間尺度協(xié)調(diào)運(yùn)行策略[J] . 電網(wǎng)技術(shù),2022,46(2) :642-654.
[18] 陳先龍,王秀麗,陳潔,等. 考慮分布式可再生能源交易的風(fēng)電商與電動(dòng)汽車(chē)充電站協(xié)同優(yōu)化調(diào)度[J]. 電網(wǎng)技術(shù),2023,47(11) :4598-4606.
[19] 彭春華,姜治,孫惠娟,等. 路-電耦合配電網(wǎng)調(diào)度與充電策略協(xié)同魯棒優(yōu)化[J] . 電網(wǎng)技術(shù), 2023,47(7) :2762-2773.
[20] 李曉舟,秦文萍,景祥,等. 計(jì)及不確定風(fēng)險(xiǎn)和多主體協(xié)同的虛擬電廠參與主輔市場(chǎng)聯(lián)合優(yōu)化策略[J]. 電網(wǎng)技術(shù),2024,48(11) :4553-4567.
[21] 周亦洲,孫國(guó)強(qiáng),黃文進(jìn),等. 計(jì)及電動(dòng)汽車(chē)和需求響應(yīng)的多類(lèi)電力市場(chǎng)下虛擬電廠競(jìng)標(biāo)模型[J]. 電網(wǎng)技術(shù),2017,41(6) :1759-1766.
[22] XIE Haixiang, GAO Shan, ZHENG Junyi, et al.A three-stage robust dispatch model considering the multi-uncertainties of electric vehicles and a multi-energy microgrid[J].International Journal of Electrical Power & Energy Systems,2024,157 :109778.
[23] SHEIDAEI F, AHMARINEJAD A.Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs[J].International Journal of Electrical Power & Energy Systems,2020,120 :106047.
[24] 盧強(qiáng),陳來(lái)軍,梅生偉. 博弈論在電力系統(tǒng)中典型應(yīng)用及若干展望[J] . 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(29) :5009-5017.
[25] 代業(yè)明, 高巖, 高紅偉, 等. 智能住宅小區(qū)的需求響應(yīng)主從博弈模型[J] . 電力系統(tǒng)自動(dòng)化,2017,41(15) :88-94.
[26] 龔誠(chéng)嘉銳,林順富,邊曉燕,等. 基于多主體主從博弈的負(fù)荷聚合商經(jīng)濟(jì)優(yōu)化模型[J]. 電力系統(tǒng)保護(hù)與控制,2022,50(2) :30-40.
[27] 劉又榕,林順富,沈運(yùn)帷,等. 計(jì)及電動(dòng)汽車(chē)參與多元需求響應(yīng)的微電網(wǎng)多時(shí)間尺度優(yōu)化調(diào)度模型[J]. 電力建設(shè),2023,44(10) :51-62.
[28] 李晨朝,陳佳佳,王敬華. 基于主從博弈和 IGDT 的含電動(dòng)汽車(chē)需求響應(yīng)光伏園區(qū)儲(chǔ)能優(yōu)化配置[J]. 電力建設(shè),2025,46(4) :126-136.
[29] 詹祥澎, 楊軍, 王昕妍, 等. 考慮實(shí)時(shí)市場(chǎng)聯(lián)動(dòng)的電力零售商魯棒定價(jià)策略[J] . 電網(wǎng)技術(shù),2022,46(6) :2141-2150.