基于改進(jìn)BCC算法的含分布式發(fā)電的配電網(wǎng)無(wú)功優(yōu)化
任新偉,徐建政
山東大學(xué) 電氣工程學(xué)院,山東 濟(jì)南 250061
摘 要:介紹了含分布式發(fā)電的配電網(wǎng)無(wú)功優(yōu)化問(wèn)題,改進(jìn)了細(xì)菌群體趨藥性算法(BCC),引入微分進(jìn)化算子和線(xiàn)性?xún)绾瘮?shù)混合映射混沌模型,動(dòng)態(tài)調(diào)整細(xì)菌移動(dòng)速度和感知范圍,提高了算法的尋優(yōu)速度和全局搜索能力。算例結(jié)果表明采用改進(jìn)的BCC 算法優(yōu)化后的配電網(wǎng)網(wǎng)損最低,迭代次數(shù)最少。
關(guān)鍵詞:改進(jìn)細(xì)菌群體趨藥性算法;分布式發(fā)電;配電網(wǎng);無(wú)功優(yōu)化
中圖分類(lèi)號(hào):TM715 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2013)10-0014-05
Reactive Power Optimization of Distribution Network with Distributed Generation Based on Improved Bacterial Colony Chemotaxis Algorithm
REN Xin-wei, XU Jian-zheng
School of Electrical Engineering, Shandong University, Jinan 250061, China
Abstract: Introduction was made to the reactive power optimization of distribution network with distributed generation and the bacterial colony chemotaxis (BCC) algorithm was improved. This paper introduced the differential evolution operator and mixed mapping chaos model of linear power function to adjust the moving speed and perception range of bacteria dynamically. The improved BCC increased the calculation speed and the capability of global search. Case calculation results show that after the improved bacterial colony chemotaxis algorithm was optimized, the distribution network has the lowest network loss and the least iteration times.
Key words: improved bacterial colony chemotaxis algorithm; distributed generation; distribution network; reactive power optimization
參考文獻(xiàn)
[1] 陳樹(shù)勇,宋書(shū)芳,李蘭欣,等. 智能電網(wǎng)技術(shù)綜述[J]. 電網(wǎng)技術(shù),2009,33(8):1-7.
[2] 王建,李興源,邱曉燕. 含有分布式發(fā)電裝置的電力系統(tǒng)研究綜述[J] . 電力系統(tǒng)自動(dòng)化,2005,29(24):90-97.
[3] 周衛(wèi),張堯,夏成軍,等. 分布式發(fā)電對(duì)配電網(wǎng)繼電保護(hù)的影響[J] . 電力系統(tǒng)保護(hù)與控制,2010,38(3):1-5.
[4] 邱曉燕,夏莉麗,李興源. 智能電網(wǎng)建設(shè)中分布式電源的規(guī)劃[J]. 電網(wǎng)技術(shù),2010,34(4):7-10.
[5] EI-Ela A A,Allam S M,Shatla M M.Maximal optimal benefits of distributed generation using genetic algorithms[J].Electric Power System Research,2010,80(7):869-877.
[6] 朱勇,楊京燕,張冬清. 基于有功網(wǎng)損最優(yōu)的分布式電源規(guī)劃[J] . 電力系統(tǒng)保護(hù)與控制,2011,39(21):12-16.
[7] Taher Niknam.A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generations[J].Energy Conversion and Management,2008,49(12):3417-3424.
[8] 張麗,徐玉琴,王增平,等. 包含分布式電源的配電網(wǎng)無(wú)功優(yōu)化[J]. 電工技術(shù)學(xué)報(bào),2011,26(3):168-174.
[9] Deb K,Pratap A,Agaresal S,et al.A fast and elitist multiobjective genetic algorithm:NSGAII[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[10] 張文,劉玉田. 自適應(yīng)粒子群優(yōu)化算法及其在無(wú)功優(yōu)化中的應(yīng)用[J]. 電網(wǎng)技術(shù),2006,30(8):19-24.
[11] 劉自發(fā),張建華. 一種求解電力經(jīng)濟(jì)負(fù)荷分配問(wèn)題的改進(jìn)微分進(jìn)化算法[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2008,28(10):100-105.
[12] 劉玉田,馬莉. 基于Tabu 搜索方法的電力系統(tǒng)無(wú)功優(yōu)化[J]. 電力系統(tǒng)自動(dòng)化,2000,24(2):61-64.
[13] 陳繼明,王元元,高艷亮. 基于改進(jìn)細(xì)菌群體趨藥性算法的配電網(wǎng)無(wú)功優(yōu)化[J]. 電力系統(tǒng)保護(hù)與控制,2012,40(14):97-102.
[14] 劉自發(fā),閆景信,張建華,等. 基于改進(jìn)微分進(jìn)化算法的電力系統(tǒng)無(wú)功優(yōu)化[J]. 電網(wǎng)技術(shù),2007,31(18):69-72.
[15] 張曉輝,盧志剛,秦四娟. 基于改進(jìn)細(xì)菌群體趨藥性算法的電力系統(tǒng)無(wú)功優(yōu)化[ J ] . 電網(wǎng)技術(shù),2012,36(2):109-114.
[16] 林濟(jì)鏗,李鴻璐,羅姍姍,等. 基于自適應(yīng)免疫算法的電力系統(tǒng)無(wú)功優(yōu)化[ J ] . 天津大學(xué)學(xué)報(bào),2007,40(1):110-115.
[17] 張勁松,李崎強(qiáng),王朝霞. 基于混沌搜索的混合粒子群優(yōu)化算法[J]. 山東大學(xué)學(xué)報(bào),2007,37(1):47-50.