基于監(jiān)測點數(shù)據(jù)分析的風電場電壓暫降預警研究
柏晶晶1,袁曉冬2,張帥1,柳偉1,陳兵2,顧偉1
1 東南大學 電氣工程學院,江蘇 南京 210096;
2 江蘇省電力公司電力科學研究院,江蘇 南京 210036
摘 要:對風電場電壓暫降指標進行深入數(shù)據(jù)挖掘并給出適當預警,可及時發(fā)現(xiàn)電網(wǎng)中已存在或潛在的電能質(zhì)量問題并加以改善。利用改進的AHP法確定電壓暫降各個特征量的權(quán)重,結(jié)合改進的歐氏距離法計算出風電場并網(wǎng)點電壓暫降監(jiān)測數(shù)據(jù)、自設(shè)等級限值以及前一段時間電壓暫降均值的距離系數(shù),進而快速準確地對風電場電壓暫降干擾的真實水平做出及時預警。通過實例分析,證明了所提方法的實用性和高效率,可將其有效應(yīng)用于電能質(zhì)量異常數(shù)據(jù)預警系統(tǒng)。
關(guān)鍵詞:風電場;電壓暫降;預警;改進的歐氏距離法
中圖分類號:TM614;TM712 文獻標識碼:A 文章編號:1007-3175(2014)04-0008-04
Research on Early Warning of Wind Farm Voltage Sag Based on Monitored Data Analysis
BAI Jing-jing1, YUAN Xiao-dong2, ZHANG Shuai1, LIU Wei1, CHEN Bin2, GU Wei1
1 School of Electrical Engineering, Southeast University, Nanjing 210096, China;
2 Jiangsu Electric Power Research Institute, Nanjing 210036, China
Abstract: Further mining voltage sag index of wind farm and suitable early warning could make it possible to timely find the existed and potential power quality problems and to give warning prompts. The improved analytic hierarchy process (AHP) was used to determine the different characteristic weights of voltage sag. Combined with the improved Euclidean distance method, this paper calculate voltage sag monitoring data at wind farm grid points and disposed grading limited values and the distance coefficient of early voltage sag mean to carry out early warning quickly and correctly for the real level of voltage sag disturbance of wind farm. The cases analysis verifies that the proposed approach is useful and high efficient and it is possible to timely conduct power quality early warning for abnormal data.
Key words: wind farm; voltage sag; early warning; improved Euclidean distance method
參考文獻
[1] 何世恩,鄭偉,智勇,等.大規(guī)模集群風電接入電網(wǎng)電能質(zhì)量問題探討[J].電力系統(tǒng)保護與控制,2013,41(2):39-44.
[2] 徐永海,肖湘寧.電力市場環(huán)境下的電能質(zhì)量問題[J].電網(wǎng)技術(shù),2004,28(22):48-52.
[3] 雷剛,顧偉,袁曉冬.考慮系統(tǒng)與敏感負荷兼容性的電壓暫降指標[J].電工技術(shù)學報,2010,25(12):132-138.
[4] Shen Cheng-chieh, Lu Chan-nan. A voltage sag index considering compatibility between equip-ment and supply[J].IEEE Transactions on Power Delivery,2007,22(2):996-1002.
[5] 趙霞,趙成勇,賈秀芳,等.基于可變權(quán)重的電能質(zhì)量模糊綜合評價[J].電網(wǎng)技術(shù),2005,29(6):11-16.
[6] 雷剛,顧偉,袁曉冬.灰色理論在電能質(zhì)量綜合評估中的應(yīng)用[J].電力自動化設(shè)備,2009,29(11):62-65.
[7] Mishra S, Bhende C N, Panigrahi B K.Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network[J].IEEE Transactions on Power Delivery, 2008,23(1):280-287.
[8] Panigrahi B K, Pandi V R.Optimal Feature Selection for Classification of Power Quality Disturbances Using Wavelet Packet-Based Fuzzy K-Nearest Neighbour Algorithm[J].Generation, Transmission & Distribution,IET,2009,3(3):296-306.
[9] 王芳,顧偉,袁曉冬,等.面向智能電網(wǎng)的新一代電能質(zhì)量管理平臺[J].電力自動化設(shè)備,2012,32(7):134-139.