沿面介質(zhì)阻擋放電裝置靜電場(chǎng)影響因素研究
李猛1,2,楊鎮(zhèn)寧1,2,李俊豪1,2,吳小釗1,2
(1 許繼集團(tuán)有限公司,河南 許昌 461000;2 許昌許繼德理施爾電氣有限公司,河南 許昌 461000)
摘 要:以螺環(huán)型沿面放電作為研究對(duì)象,利用有限元仿真軟件對(duì)沿面介質(zhì)阻擋放電裝置進(jìn)行靜電場(chǎng)的仿真分析,研究激勵(lì)電壓、高壓電極線徑、高壓電極間距( 螺距)、介質(zhì)厚度及介質(zhì)相對(duì)介電常數(shù)等對(duì)沿面介質(zhì)阻擋放電裝置靜電場(chǎng)的影響。仿真結(jié)果表明:在氣隙的同一位置,場(chǎng)強(qiáng)隨電壓的升高而線性增大,隨線徑的減小而非線性減小,隨介質(zhì)厚度的增加而非線性減小,隨相對(duì)介電常數(shù)的增大而非線性增大。選取電極線徑較小、介質(zhì)厚度薄、較大相對(duì)介電常數(shù)的介質(zhì),均可以降低放電起始電壓。
關(guān)鍵詞:沿面介質(zhì)阻擋放電;放電特性;電場(chǎng)分析;結(jié)構(gòu)優(yōu)化
中圖分類號(hào):TM854 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2016)06-0007-05
Research on Influencing Factors of Electrostatic Field in
Surface Dielectric Barrier Discharging Device
LI Meng1,2, YANG Zhen-ning1,2, LI Jun-hao1,2, WU Xiao-zhao1,2
(1 XJ Group Corporation, Xuchang 461000, China; 2 XJ-Driescher Wegberg Electric Co., Ltd, Xuchang 461000, China)
Abstract: Taking a cylinder surface discharge reactor as the object, this paper simulated and analyzed the surface dielectric barrier discharge device by using finite element analyzing software. This paper researched on the influence of excitation voltage, high voltage electrode wire diameter and screw pitch, dielectric thickness and relative dielectric constant of dielectric etc on the static electrical field of surface dielectric barrier discharge device. The simulation results show that in the same position of air gap the electric field increases linearly with the increase of the applied voltage, reduces nonlinearly with the reduce of the wire diameter, reduces nonlinearly with the increase of the thickness of the dielectric and increases nonlinearly with the increase of relative dielectric constant. The selection of smaller diameter of the electrode, thicker dielectric or dielectric with larger relative dielectric constant could reduce discharge inception voltage.
Key words: surface dielectric barrier discharge; discharge characteristic; electric field analysis; structural optimization
參考文獻(xiàn)
[1] 袁大陸. 全國電力系統(tǒng)高壓開關(guān)設(shè)備10 年運(yùn)行狀況述評(píng)[J]. 電力設(shè)備,2005,6(1):29-34.
[2] SHAO T, YAN P, LONG K, et al.Dielectricbarrier discharge excitated by repetitive nanosecond pulses in air at atmospheric pressure[J]. IEEE Transactions on Plasma Science,2008,36(4):1358-1359.
[3] 李雪辰, 趙歡歡, 賈鵬英, 等. 常壓空氣中大間隙介質(zhì)阻擋放電特性[J]. 高電壓技術(shù),2013,39(4):876-882.
[4] VOETER S J, BECKERS F, van HEESCH E, et al. Optical characterization of surface dielectric barrier discharges[J].IEEE Transactions on Plasma Science,2011,39(11):2142-2143.
[5] 李清泉, 許光可, 房新振, 等. 沿面型介質(zhì)阻擋放電的數(shù)值仿真計(jì)算[J]. 高電壓技術(shù),2012,38(7):1548-1555.
[6] 周澤存,沈其工,方瑜,等. 高電壓技術(shù)[M].3 版. 北京:中國電力出版,2007.
[7] 潘俊,方志. 多脈沖均勻介質(zhì)阻擋放電特性的仿真及實(shí)驗(yàn)研究[J]. 高電壓技術(shù),2012,38(5):1132-1140.
[8] AN Jiutao, SHANG Kefeng, LU Na, et al.Oxidation of elemental mercury by active species generated from a surface dielectric barrier discharge plasma reactor[J].Plasma Chemistry & Plasma Processing,2014,34(1):217-228.
[9] JIANG Nan, LU Na, SHANG Kefeng, et al.Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas[J]. Environmental Science & Technology,2013,47(17):9898-9903.
[10] GB/T 11022—1999 高壓開關(guān)設(shè)備和控制設(shè)備標(biāo)準(zhǔn)的共用技術(shù)要求[S].
[11] 包博,謝天喜,彭宗仁,等.750 kV高壓電抗器籠式出線結(jié)構(gòu)均壓特性研究[J]. 電網(wǎng)技術(shù),2011,35(5):232-236.
[12] BIGANZOLI I, BARNI R, RICCARDI C, et al.Optical and electrical characterization of a surface dielectric barrier discharge plasma actuator[J]. Plasma Sources Science & Technology,2013,22(2):1011-1017.
[13] TAKASHIMA K, ZUZEEK Y, LEMPERT W, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses[J].Plasma Sources Science & Technology,2011,20(5):55009-55018.
[14] 潘浩, 殷慶鐸, 高文勝. 固體絕緣中氣隙尺寸對(duì)局部放電過程的影響[J]. 高電壓技術(shù),2008,34(3):458-461.
[15] 嚴(yán)璋,朱德恒. 高電壓絕緣技術(shù)[M]. 北京:中國電力出版社,2001.